TU Darmstadt / ULB / TUbiblio

The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes

Hennrich, Frank ; Krupke, Ralph ; Arnold, Katharina ; Rojas Stütz, Jan A. ; Lebedkin, Sergei ; Koch, Thomas ; Schimmel, Thomas ; Kappes, Manfred M. (2007)
The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes.
In: The Journal of Physical Chemistry B, 111 (8)
doi: 10.1021/jp065262n
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Aqueous suspensions of length selected single-walled carbon nanotubes were studied by atomic force microscopy (AFM) in order to probe the influence of sonication on nanotube scission. The maximum of the tube length distribution, lM, initially exhibits a power law dependence on the sonication time, t  roughly as lM ≈ t-0.5. This and the limiting behavior observed at longer times can be rationalized to first order in terms of a continuum model deriving from polymer physics. In this picture, the strain force associated with cavitation scales with the square of the nanotube length. Scission stops when the strain force falls below the critical value for nanotube disruption.

Typ des Eintrags: Artikel
Erschienen: 2007
Autor(en): Hennrich, Frank ; Krupke, Ralph ; Arnold, Katharina ; Rojas Stütz, Jan A. ; Lebedkin, Sergei ; Koch, Thomas ; Schimmel, Thomas ; Kappes, Manfred M.
Art des Eintrags: Bibliographie
Titel: The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes
Sprache: Englisch
Publikationsjahr: 3 Februar 2007
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of Physical Chemistry B
Jahrgang/Volume einer Zeitschrift: 111
(Heft-)Nummer: 8
DOI: 10.1021/jp065262n
Kurzbeschreibung (Abstract):

Aqueous suspensions of length selected single-walled carbon nanotubes were studied by atomic force microscopy (AFM) in order to probe the influence of sonication on nanotube scission. The maximum of the tube length distribution, lM, initially exhibits a power law dependence on the sonication time, t  roughly as lM ≈ t-0.5. This and the limiting behavior observed at longer times can be rationalized to first order in terms of a continuum model deriving from polymer physics. In this picture, the strain force associated with cavitation scales with the square of the nanotube length. Scission stops when the strain force falls below the critical value for nanotube disruption.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 08 Nov 2011 12:49
Letzte Änderung: 05 Mär 2013 09:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen