TU Darmstadt / ULB / TUbiblio

Toward Controlled Gilch Synthesis of Poly(p-phenylene vinylenes): Anionic vs Radical Chain Propagation, a Mechanistic Reinvestigation

Schwalm, Thorsten ; Wiesecke, Jens ; Immel, Stefan ; Rehahn, Matthias (2007)
Toward Controlled Gilch Synthesis of Poly(p-phenylene vinylenes): Anionic vs Radical Chain Propagation, a Mechanistic Reinvestigation.
In: Macromolecules, 40 (25)
doi: 10.1021/ma071337p
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

It is a broad consensus that the first step in the Gilch synthesis of poly(p-phenylene vinylenes) (PPVs) is 1,6-dehydrohalogenation of the 1,4-bis(halomethylene)benzene starting materials. The mechanism of the subsequent chain growth of the resulting α-halo-p-quinodimethane monomers, however, is still a matter of discussion. We re-evaluated the arguments presented for anionic chain propagation and set them against the evidence obtained for a radical mechanism. We conclude that (i) the initial dehydrohalogenation of the starting material represents an E2 type 1,6-elimination without anionic intermediates, (ii) anionic chain propagation does not play a role in standard Gilch syntheses, but instead, (iii) the PPVs grow predominantly via radical chain polymerization. However, since the growing species are α,ω-macro-diradicals, recombination does not cause chain termination as in conventional radical polymerizations. This is one reason for the formation of very high-molecular weight PPVs. The monofunctional benzylhalogenides, sometimes assumed to act as initiators of anionic chain growth and to suppress gelation of the reaction mixtures by lowering the PPVs' molar masses, clearly do not play this role: while we could verify that these additives lower the risk of gelation, they are neither incorporated as end groups into the PPVs nor do they lower the molar masses. Instead, gelation is most probably due to physical crosslinking, induced by the very high entanglement density of the PPV chains immediately after their formation. Additives such as monofunctional benzylhalogenides seem to accelerate de-entanglement, possibly either by retarding the conversion of the still quite flexible poly(p-xylylene) (PPX) precursors into the semirigid PPVs, thereby giving the chains a better chance to de-entangle, or by preferential solvation and successful competition with segment-segment interactions. In agreement with the proposed mechanism is the reproducible observation that additives which antagonize gelation efficiently, simultaneously increase the magnitude of the only relevant side reaction of Gilch reactions, i.e., formation of [2.2]paracyclophanes.

Typ des Eintrags: Artikel
Erschienen: 2007
Autor(en): Schwalm, Thorsten ; Wiesecke, Jens ; Immel, Stefan ; Rehahn, Matthias
Art des Eintrags: Bibliographie
Titel: Toward Controlled Gilch Synthesis of Poly(p-phenylene vinylenes): Anionic vs Radical Chain Propagation, a Mechanistic Reinvestigation
Sprache: Englisch
Publikationsjahr: Dezember 2007
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Macromolecules
Jahrgang/Volume einer Zeitschrift: 40
(Heft-)Nummer: 25
DOI: 10.1021/ma071337p
Kurzbeschreibung (Abstract):

It is a broad consensus that the first step in the Gilch synthesis of poly(p-phenylene vinylenes) (PPVs) is 1,6-dehydrohalogenation of the 1,4-bis(halomethylene)benzene starting materials. The mechanism of the subsequent chain growth of the resulting α-halo-p-quinodimethane monomers, however, is still a matter of discussion. We re-evaluated the arguments presented for anionic chain propagation and set them against the evidence obtained for a radical mechanism. We conclude that (i) the initial dehydrohalogenation of the starting material represents an E2 type 1,6-elimination without anionic intermediates, (ii) anionic chain propagation does not play a role in standard Gilch syntheses, but instead, (iii) the PPVs grow predominantly via radical chain polymerization. However, since the growing species are α,ω-macro-diradicals, recombination does not cause chain termination as in conventional radical polymerizations. This is one reason for the formation of very high-molecular weight PPVs. The monofunctional benzylhalogenides, sometimes assumed to act as initiators of anionic chain growth and to suppress gelation of the reaction mixtures by lowering the PPVs' molar masses, clearly do not play this role: while we could verify that these additives lower the risk of gelation, they are neither incorporated as end groups into the PPVs nor do they lower the molar masses. Instead, gelation is most probably due to physical crosslinking, induced by the very high entanglement density of the PPV chains immediately after their formation. Additives such as monofunctional benzylhalogenides seem to accelerate de-entanglement, possibly either by retarding the conversion of the still quite flexible poly(p-xylylene) (PPX) precursors into the semirigid PPVs, thereby giving the chains a better chance to de-entangle, or by preferential solvation and successful competition with segment-segment interactions. In agreement with the proposed mechanism is the reproducible observation that additives which antagonize gelation efficiently, simultaneously increase the magnitude of the only relevant side reaction of Gilch reactions, i.e., formation of [2.2]paracyclophanes.

Zusätzliche Informationen:

SFB 595 A5

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A5: Synthese halbleitender Modellpolymere und deren Charakterisierung vor und nach zyklischer elektrischer Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 20 Sep 2011 12:56
Letzte Änderung: 05 Mär 2013 09:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen