TU Darmstadt / ULB / TUbiblio

Unipolar space-charge limited current through layers with a disparate concentration of shallow traps: Experiment and model

Fleissner, Arne ; Weise, Wieland ; Seggern, Heinz von (2005)
Unipolar space-charge limited current through layers with a disparate concentration of shallow traps: Experiment and model.
In: Journal of Applied Physics, 97 (4)
doi: 10.1063/1.1840094
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The influence of the spatial distribution of trap states on unipolar space-charge limited current (SCLC) is investigated experimentally and theoretically. Thin-layered films of the small molecule organic semiconductor N,N′-di(1-naphtyl)-N,N′-diphenylbenzidine (α-NPD) are vapor deposited on indium tin oxide, with aluminum as the counter electrode. The small molecule 4,4′,4″-tris-[N-(1-naphtyl)-N-(phenylamino)]-triphenylamine (1-NaphDATA), which creates well-known shallow traps for holes, is used as dopant. The realized organic films consist of three layers, one of which is homogeneously doped. The influence of the spatial position of the doped layer on the current–voltage characteristics of the diodes is examined. Compared to an undoped device, the current density is strongly decreased and varies over orders of magnitude for the different spatial positions of the doped layer. It is shown that traps near the injecting electrode have the most pronounced effect on SCLC. A model for unipolar SCLC through a system of homogeneous layers with different trapping parameters for shallow traps is presented. The model quantitatively describes the experimental data and is used to calculate the spatial distributions of the charge-carrier density and the electric-field strength in the differently doped devices.

Typ des Eintrags: Artikel
Erschienen: 2005
Autor(en): Fleissner, Arne ; Weise, Wieland ; Seggern, Heinz von
Art des Eintrags: Bibliographie
Titel: Unipolar space-charge limited current through layers with a disparate concentration of shallow traps: Experiment and model
Sprache: Englisch
Publikationsjahr: 15 Februar 2005
Verlag: American Institute of Physics Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 97
(Heft-)Nummer: 4
DOI: 10.1063/1.1840094
Kurzbeschreibung (Abstract):

The influence of the spatial distribution of trap states on unipolar space-charge limited current (SCLC) is investigated experimentally and theoretically. Thin-layered films of the small molecule organic semiconductor N,N′-di(1-naphtyl)-N,N′-diphenylbenzidine (α-NPD) are vapor deposited on indium tin oxide, with aluminum as the counter electrode. The small molecule 4,4′,4″-tris-[N-(1-naphtyl)-N-(phenylamino)]-triphenylamine (1-NaphDATA), which creates well-known shallow traps for holes, is used as dopant. The realized organic films consist of three layers, one of which is homogeneously doped. The influence of the spatial position of the doped layer on the current–voltage characteristics of the diodes is examined. Compared to an undoped device, the current density is strongly decreased and varies over orders of magnitude for the different spatial positions of the doped layer. It is shown that traps near the injecting electrode have the most pronounced effect on SCLC. A model for unipolar SCLC through a system of homogeneous layers with different trapping parameters for shallow traps is presented. The model quantitatively describes the experimental data and is used to calculate the spatial distributions of the charge-carrier density and the electric-field strength in the differently doped devices.

Freie Schlagworte: tin compounds, indium compounds, aluminium, organic semiconductors, semiconductor thin films, semiconductor growth, vacuum deposition, semiconductor doping, doping profiles, semiconductor diodes, semiconductor device models, space-charge-limited conduction, carrier density, electron traps, hole traps, impurity states, current density, space-charge limited devices
Zusätzliche Informationen:

SFB 595 D4

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektronische Materialeigenschaften
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften > Teilprojekt D4: Betriebsbedingte Ermüdung von Bauelementen aus organischen Halbleitern
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 16 Sep 2011 14:02
Letzte Änderung: 20 Jun 2013 08:06
PPN:
Sponsoren: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 595.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen