Oberlack, Martin ; Peters, Norbert
Hrsg.: So, R. M. C. ; Speziale, C. G. ; Launder, Brian El. (1993)
Closure of the Two-Point Correlation Equation in Physical Space as a Basis for Reynolds Stress Models.
In: Near-Wall Turbulent Flows: Proceedings of the International Conference, Tempe, AZ, USA, 15-17 March 1993
Buchkapitel, Bibliographie
Kurzbeschreibung (Abstract)
A closure model for the von Kármán-Howarth-Equation is introduced. The model holds for a wide range of well accepted turbulence theories for homogeneous isotropic turbulence, as there is Kolmogorovs first and second similarity hypothesis and the invariant theory, which is a generalization of Loitsianskiis and Birkhoffs integrals. Experimental verification supports the model in a range of reliable data and numerical calculations produces nearly identical results with the EDQNM theory. The model could be extended to the correlation equation for arbitrary turbulent flows. Supposing locally isotropic turbulence a moment expansion of the correlation equation brings out the production term in the ε-equation in a modified form. It could be shown that the deviation of cε₁ from 3/2 emerges from the nonlocal dependence of dissipation. The dissipation term in the ε-equation leads to a coupling of the parameter cε₂ with basic parameters describing the decay law of isotropic turbulence.
Typ des Eintrags: | Buchkapitel |
---|---|
Erschienen: | 1993 |
Herausgeber: | So, R. M. C. ; Speziale, C. G. ; Launder, Brian El. |
Autor(en): | Oberlack, Martin ; Peters, Norbert |
Art des Eintrags: | Bibliographie |
Titel: | Closure of the Two-Point Correlation Equation in Physical Space as a Basis for Reynolds Stress Models |
Sprache: | Englisch |
Publikationsjahr: | 1993 |
Verlag: | Elsevier Science |
Buchtitel: | Near-Wall Turbulent Flows: Proceedings of the International Conference, Tempe, AZ, USA, 15-17 March 1993 |
Kurzbeschreibung (Abstract): | A closure model for the von Kármán-Howarth-Equation is introduced. The model holds for a wide range of well accepted turbulence theories for homogeneous isotropic turbulence, as there is Kolmogorovs first and second similarity hypothesis and the invariant theory, which is a generalization of Loitsianskiis and Birkhoffs integrals. Experimental verification supports the model in a range of reliable data and numerical calculations produces nearly identical results with the EDQNM theory. The model could be extended to the correlation equation for arbitrary turbulent flows. Supposing locally isotropic turbulence a moment expansion of the correlation equation brings out the production term in the ε-equation in a modified form. It could be shown that the deviation of cε₁ from 3/2 emerges from the nonlocal dependence of dissipation. The dissipation term in the ε-equation leads to a coupling of the parameter cε₂ with basic parameters describing the decay law of isotropic turbulence. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) 16 Fachbereich Maschinenbau |
Hinterlegungsdatum: | 30 Aug 2011 14:12 |
Letzte Änderung: | 17 Feb 2014 08:45 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |