TU Darmstadt / ULB / TUbiblio

An Invariant Nonlinear Eddy Viscosity Model Based on a Consistent 4D Modelling Approach

Frewer, Michael
Hrsg.: Peinke, Joachim ; Oberlack, Martin ; Talamelli, Alessandro (2009)
An Invariant Nonlinear Eddy Viscosity Model Based on a Consistent 4D Modelling Approach.
In: Progress in Turbulence III: Proceedings of the iTi Conference in Turbulence 2008
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

When developing turbulence modelling from scratch certain questions arise which inevitably turn into methodological problems regarding this topic What makes Euclidean transformations in classical continuum mechanics, in particular turbulence modelling, so special ? Why is frame-dependency in all unclosed terms of existing algebraic models, e.g. in the Reynolds-stress tensor, always only modelled by the mean objective intrinsic spin tensor, i.e. the mean vorticity tensor measured in a rotating frame relative to an inertial frame: <W ij>=<ω ij>+ε ijk Ω k ? Why is the mean pressure or one of its gradients never taken along as a closure variable ? Why does there still not exist a clear-cut mathematical formulation of the material frame-indifference (MFI)-principle in general continuum mechanics (if it applies as a physical approximation for reducing constitutive equations) ? What consequences does a proper mathematical formulation have for modelling turbulence in the limit of a 2D flow state ? Answers to these questions are given herein, except for the last question which is beyond the scope of this article 1. From the outset it is clear, that in order to give an unambiguous answer to these interlinked questions one needs a new mathematical framework, or more precisely, a setting of universal form-invariance (UFI) which extends the classical framework of an Euclidean geometry being used so far 1.

Typ des Eintrags: Buchkapitel
Erschienen: 2009
Herausgeber: Peinke, Joachim ; Oberlack, Martin ; Talamelli, Alessandro
Autor(en): Frewer, Michael
Art des Eintrags: Bibliographie
Titel: An Invariant Nonlinear Eddy Viscosity Model Based on a Consistent 4D Modelling Approach
Sprache: Englisch
Publikationsjahr: 2009
Ort: Berlin Heidelberg
Verlag: Springer
(Heft-)Nummer: 131
Buchtitel: Progress in Turbulence III: Proceedings of the iTi Conference in Turbulence 2008
Reihe: Springer Proceedings in Physics
URL / URN: http://dx.doi.org/10.1007/978-3-642-02225-8_32
Kurzbeschreibung (Abstract):

When developing turbulence modelling from scratch certain questions arise which inevitably turn into methodological problems regarding this topic What makes Euclidean transformations in classical continuum mechanics, in particular turbulence modelling, so special ? Why is frame-dependency in all unclosed terms of existing algebraic models, e.g. in the Reynolds-stress tensor, always only modelled by the mean objective intrinsic spin tensor, i.e. the mean vorticity tensor measured in a rotating frame relative to an inertial frame: <W ij>=<ω ij>+ε ijk Ω k ? Why is the mean pressure or one of its gradients never taken along as a closure variable ? Why does there still not exist a clear-cut mathematical formulation of the material frame-indifference (MFI)-principle in general continuum mechanics (if it applies as a physical approximation for reducing constitutive equations) ? What consequences does a proper mathematical formulation have for modelling turbulence in the limit of a 2D flow state ? Answers to these questions are given herein, except for the last question which is beyond the scope of this article 1. From the outset it is clear, that in order to give an unambiguous answer to these interlinked questions one needs a new mathematical framework, or more precisely, a setting of universal form-invariance (UFI) which extends the classical framework of an Euclidean geometry being used so far 1.

Freie Schlagworte: Engineering
Zusätzliche Informationen:

dio: 10.1007/978-3-642-02225-8_32

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Hinterlegungsdatum: 01 Sep 2011 11:14
Letzte Änderung: 12 Jan 2019 21:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen