TU Darmstadt / ULB / TUbiblio

Extensive strain along gradient trajectories in the turbulent kinetic energy field

Gampert, Markus ; Goebbert, Jens Henrik ; Schaefer, Philip ; Gauding, Michael ; Peters, Norbert ; Aldudak, Fettah ; Oberlack, Martin (2011)
Extensive strain along gradient trajectories in the turbulent kinetic energy field.
In: New Journal of Physics, 13 (4)
doi: 10.1088/1367-2630/13/4/043012
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Based on direct numerical simulations of forced turbulence, shear turbulence, decaying turbulence, a turbulent channel flow as well as a Kolmogorov flow with Taylor-based Reynolds numbers Reλ between 69 and 295, the normalized probability density function of the length distribution P(l) of dissipation elements, the conditional mean scalar difference Δkl at the extreme points as well as the scaling of the two-point velocity difference along gradient trajectories Δun are studied. Using the field of the instantaneous turbulent kinetic energy k as a scalar, we find good agreement between the model equation for P(l) as proposed by Wang and Peters (2008 J. Fluid Mech. 608 113–38) and the results obtained in the different direct numerical simulation cases. This confirms the independence of the model solution from both the Reynolds number and the type of turbulent flow, so that it can be considered universally valid. In addition, we show a 2/3 scaling for the mean conditional scalar difference. In the second part of the paper, we examine the scaling of the conditional two-point velocity difference along gradient trajectories. In particular, we compare the linear s/τ scaling, where τ denotes an integral time scale and s the separation arclength along a gradient trajectory in the inertial range as derived by Wang (2009 Phys. Rev. E 79 046325) with the sa∞ scaling, where a∞ denotes the asymptotic value of the conditional mean strain rate of large dissipation elements.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Gampert, Markus ; Goebbert, Jens Henrik ; Schaefer, Philip ; Gauding, Michael ; Peters, Norbert ; Aldudak, Fettah ; Oberlack, Martin
Art des Eintrags: Bibliographie
Titel: Extensive strain along gradient trajectories in the turbulent kinetic energy field
Sprache: Englisch
Publikationsjahr: April 2011
Verlag: Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 4
DOI: 10.1088/1367-2630/13/4/043012
URL / URN: http://stacks.iop.org/1367-2630/13/i=4/a=043012
Zugehörige Links:
Kurzbeschreibung (Abstract):

Based on direct numerical simulations of forced turbulence, shear turbulence, decaying turbulence, a turbulent channel flow as well as a Kolmogorov flow with Taylor-based Reynolds numbers Reλ between 69 and 295, the normalized probability density function of the length distribution P(l) of dissipation elements, the conditional mean scalar difference Δkl at the extreme points as well as the scaling of the two-point velocity difference along gradient trajectories Δun are studied. Using the field of the instantaneous turbulent kinetic energy k as a scalar, we find good agreement between the model equation for P(l) as proposed by Wang and Peters (2008 J. Fluid Mech. 608 113–38) and the results obtained in the different direct numerical simulation cases. This confirms the independence of the model solution from both the Reynolds number and the type of turbulent flow, so that it can be considered universally valid. In addition, we show a 2/3 scaling for the mean conditional scalar difference. In the second part of the paper, we examine the scaling of the conditional two-point velocity difference along gradient trajectories. In particular, we compare the linear s/τ scaling, where τ denotes an integral time scale and s the separation arclength along a gradient trajectory in the inertial range as derived by Wang (2009 Phys. Rev. E 79 046325) with the sa∞ scaling, where a∞ denotes the asymptotic value of the conditional mean strain rate of large dissipation elements.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Exzellenzinitiative
Exzellenzinitiative > Exzellenzcluster
Zentrale Einrichtungen
Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI)
Hinterlegungsdatum: 24 Aug 2011 18:16
Letzte Änderung: 06 Mär 2024 06:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen