Salit, Victor (2011)
Some Contributions to the Homogenization of Macroscopically Isotropic Composites.
Buch, Erstveröffentlichung
Kurzbeschreibung (Abstract)
The development of homogenization models and solutions, either analytic or numerical, is a difficult task. Due to the integral nature of equations, the result has a good chance to fall within the theoretical bounds and as long as it is there - there might be no indication for any mistake. The difficulty of the homogenization stems not from the involved mathematical concepts, but rather from the little, to at times, no difference between something correct and something that just happens to look plausible. In this work it is argued that the Hashin-Shtrikman expressions are not bounds, but rather boundaries of the solution (hyper)surface. It is also shown that the well known Hill condition is not a necessary ingredient for the homogenization. Using a few homogenization concepts, a complete system of equations describing the macroscopic behavior of the heterogeneous materials has been derived. This system possesses a simple solution in the isotropic case.
Typ des Eintrags: | Buch | ||||
---|---|---|---|---|---|
Erschienen: | 2011 | ||||
Autor(en): | Salit, Victor | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Some Contributions to the Homogenization of Macroscopically Isotropic Composites | ||||
Sprache: | Englisch | ||||
Referenten: | Gruttmann, Dr.-Ing Friedrich ; Gross, Dr.-Ing Dietmar | ||||
Publikationsjahr: | 25 Juli 2011 | ||||
Ort: | Darmstadt | ||||
Verlag: | Techn. Univ., Studienbereich Mechanik | ||||
Reihe: | Forschungsbericht // Studienbereich Mechanik, Technische Universität Darmstadt | ||||
Band einer Reihe: | 23 | ||||
Datum der mündlichen Prüfung: | 7 Juli 2011 | ||||
URL / URN: | urn:nbn:de:tuda-tuprints-26704 | ||||
Kurzbeschreibung (Abstract): | The development of homogenization models and solutions, either analytic or numerical, is a difficult task. Due to the integral nature of equations, the result has a good chance to fall within the theoretical bounds and as long as it is there - there might be no indication for any mistake. The difficulty of the homogenization stems not from the involved mathematical concepts, but rather from the little, to at times, no difference between something correct and something that just happens to look plausible. In this work it is argued that the Hashin-Shtrikman expressions are not bounds, but rather boundaries of the solution (hyper)surface. It is also shown that the well known Hill condition is not a necessary ingredient for the homogenization. Using a few homogenization concepts, a complete system of equations describing the macroscopic behavior of the heterogeneous materials has been derived. This system possesses a simple solution in the isotropic case. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Schlagworte: |
|
||||
Zusätzliche Informationen: | [Darmstadt, TU, Diss., 2011] |
||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Festkörpermechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik |
||||
Hinterlegungsdatum: | 03 Aug 2011 06:41 | ||||
Letzte Änderung: | 05 Mär 2013 09:51 | ||||
PPN: | |||||
Referenten: | Gruttmann, Dr.-Ing Friedrich ; Gross, Dr.-Ing Dietmar | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 7 Juli 2011 | ||||
Schlagworte: |
|
||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |