TU Darmstadt / ULB / TUbiblio

CuO as a sintering additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics

Jo, Wook ; Ollagnier, Jean-Baptiste ; Park, Jong-Lo ; Anton, Eva-Maria ; Kwon, O-Jong ; Park, Chan ; Seo, Hyun-Ho ; Lee, Jong-Sook ; Erdem, Emre ; Eichel, Rüdiger-A. ; Rödel, Jürgen (2011)
CuO as a sintering additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics.
In: Journal of the European Ceramic Society, 31 (12)
doi: 10.1016/j.jeurceramsoc.2011.05.008
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

CuO as a sintering additivewas utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3–0.06BaTiO3–0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as ∼930 ◦C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Jo, Wook ; Ollagnier, Jean-Baptiste ; Park, Jong-Lo ; Anton, Eva-Maria ; Kwon, O-Jong ; Park, Chan ; Seo, Hyun-Ho ; Lee, Jong-Sook ; Erdem, Emre ; Eichel, Rüdiger-A. ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: CuO as a sintering additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics
Sprache: Englisch
Publikationsjahr: 2011
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the European Ceramic Society
Jahrgang/Volume einer Zeitschrift: 31
(Heft-)Nummer: 12
DOI: 10.1016/j.jeurceramsoc.2011.05.008
Kurzbeschreibung (Abstract):

CuO as a sintering additivewas utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3–0.06BaTiO3–0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as ∼930 ◦C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.

Freie Schlagworte: Lead-free piezoceramics; C. Dielectric properties; C. Piezoelectric properties; A. Grain growth; B. Spectroscopy
Zusätzliche Informationen:

SFB 595 Cooperation A1, B1

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A1: Herstellung keramischer, texturierter Akuatoren mit hoher Dehnung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung > Teilprojekt B1: EPR Untersuchung von Defekten in ferroelektrischen keramischen Werkstoffen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 04 Jul 2011 15:56
Letzte Änderung: 05 Mär 2013 09:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen