TU Darmstadt / ULB / TUbiblio

An Empirical Quest for Optimal Rule Learning Heuristics

Janssen, Frederik ; Fürnkranz, Johannes (2008)
An Empirical Quest for Optimal Rule Learning Heuristics.
Report, Bibliographie

Kurzbeschreibung (Abstract)

The primary goal of the research reported in this paper is to identify what criteria are responsible for the good performance of a heuristic rule evaluation function in a greedy topdown covering algorithm. We first argue that search heuristics for inductive rule learning algorithms typically trade off consistency and coverage, and we investigate this trade-off by determining optimal parameter settings for five different parametrized heuristics. In order to avoid biasing our study by known functional families, we also investigate the potential of using meta-learning for obtaining alternative rule learning heuristics. The key results of this experimental study are not only practical default values for commonly used heuristics and a broad comparative evaluation of known and novel rule learning heuristics, but we also gain theoretical insights into factors that are responsible for a good performance. For example, we observe that consistency should be weighed more heavily than coverage, presumably because a lack of coverage can later be corrected by learning additional rules.

Typ des Eintrags: Report
Erschienen: 2008
Autor(en): Janssen, Frederik ; Fürnkranz, Johannes
Art des Eintrags: Bibliographie
Titel: An Empirical Quest for Optimal Rule Learning Heuristics
Sprache: Englisch
Publikationsjahr: 2008
URL / URN: http://www.ke.informatik.tu-darmstadt.de/publications/report...
Kurzbeschreibung (Abstract):

The primary goal of the research reported in this paper is to identify what criteria are responsible for the good performance of a heuristic rule evaluation function in a greedy topdown covering algorithm. We first argue that search heuristics for inductive rule learning algorithms typically trade off consistency and coverage, and we investigate this trade-off by determining optimal parameter settings for five different parametrized heuristics. In order to avoid biasing our study by known functional families, we also investigate the potential of using meta-learning for obtaining alternative rule learning heuristics. The key results of this experimental study are not only practical default values for commonly used heuristics and a broad comparative evaluation of known and novel rule learning heuristics, but we also gain theoretical insights into factors that are responsible for a good performance. For example, we observe that consistency should be weighed more heavily than coverage, presumably because a lack of coverage can later be corrected by learning additional rules.

ID-Nummer: TUD-KE-2008-01
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik > Knowledge Engineering
20 Fachbereich Informatik
Hinterlegungsdatum: 24 Jun 2011 15:14
Letzte Änderung: 05 Mär 2013 09:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen