TU Darmstadt / ULB / TUbiblio

Efficient prediction algorithms for binary decomposition techniques

Park, Sang-Hyeun ; Fürnkranz, Johannes (2012)
Efficient prediction algorithms for binary decomposition techniques.
In: Data Mining and Knowledge Discovery, 24 (1)
doi: 10.1007/s10618-011-0219-9
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Binary decomposition methods transform multiclass learning problems into a series of two-class learning problems that can be solved with simpler learning algorithms. As the number of such binary learning problems often grows super-linearly with the number of classes, we need efficient methods for computing the predictions. In this article, we discuss an efficient algorithm that queries only a dynamically determined subset of the trained classifiers, but still predicts the same classes that would have been predicted if all classifiers had been queried. The algorithm is first derived for the simple case of pairwise classification, and then generalized to arbitrary pairwise decompositions of the learning problem in the form of ternary error-correcting output codes under a variety of different code designs and decoding strategies.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Park, Sang-Hyeun ; Fürnkranz, Johannes
Art des Eintrags: Bibliographie
Titel: Efficient prediction algorithms for binary decomposition techniques
Sprache: Englisch
Publikationsjahr: 2012
Verlag: Springer Netherlands
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Data Mining and Knowledge Discovery
Jahrgang/Volume einer Zeitschrift: 24
(Heft-)Nummer: 1
DOI: 10.1007/s10618-011-0219-9
Kurzbeschreibung (Abstract):

Binary decomposition methods transform multiclass learning problems into a series of two-class learning problems that can be solved with simpler learning algorithms. As the number of such binary learning problems often grows super-linearly with the number of classes, we need efficient methods for computing the predictions. In this article, we discuss an efficient algorithm that queries only a dynamically determined subset of the trained classifiers, but still predicts the same classes that would have been predicted if all classifiers had been queried. The algorithm is first derived for the simple case of pairwise classification, and then generalized to arbitrary pairwise decompositions of the learning problem in the form of ternary error-correcting output codes under a variety of different code designs and decoding strategies.

Freie Schlagworte: aggregation, binary decomposition, efficient decoding, efficient voting, multiclass classification, pairwise classification, ternary ECOC
Zusätzliche Informationen:

10.1007/s10618-011-0219-9

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik > Knowledge Engineering
20 Fachbereich Informatik
Hinterlegungsdatum: 24 Jun 2011 13:31
Letzte Änderung: 05 Mär 2013 09:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen