Friedrich, Axel ; Raabe, H. ; Schiefele, J. (1999)
Airport-databases for 3D-synthetic vision flight guidance displays, database design, quality-assessment and data generation.
AEROSENSE '99. Orlando, Fla (05.04.1999-09.04.1999)
doi: 10.1117/12.354413
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite-platforms or aircraft-platforms. To achieve the highest horizontal accuracy requirements stated in ICAO Annex 14 for runway centerlines (0.50 meters), at the present moment only images acquired from aircraft based sensors can be used as source data. Still, ground reference by GCP (Ground Control-points) is obligatory. A DEM (Digital Elevation Model) can be created automatically in the photogrammetric process. It can be used as highly accurate elevation model for the airport area. The final verification of airport data is accomplished by independent surveyed runway- and taxiway- control-points. The concept of generation airport-data by means of remote sensing and photogrammetry was tested with the Stuttgart/Germany airport. The results proved that the final accuracy was within the accuracy specification defined by ICAO Annex 14.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 1999 |
Autor(en): | Friedrich, Axel ; Raabe, H. ; Schiefele, J. |
Art des Eintrags: | Bibliographie |
Titel: | Airport-databases for 3D-synthetic vision flight guidance displays, database design, quality-assessment and data generation |
Sprache: | Englisch |
Publikationsjahr: | 1999 |
Ort: | Bellingham, WA USA |
Verlag: | Spie |
Buchtitel: | Enhanced and Synthetic Vision 1999 |
Reihe: | SPIE Proceedings Series |
Band einer Reihe: | 3691 |
Veranstaltungstitel: | AEROSENSE '99 |
Veranstaltungsort: | Orlando, Fla |
Veranstaltungsdatum: | 05.04.1999-09.04.1999 |
DOI: | 10.1117/12.354413 |
Kurzbeschreibung (Abstract): | In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite-platforms or aircraft-platforms. To achieve the highest horizontal accuracy requirements stated in ICAO Annex 14 for runway centerlines (0.50 meters), at the present moment only images acquired from aircraft based sensors can be used as source data. Still, ground reference by GCP (Ground Control-points) is obligatory. A DEM (Digital Elevation Model) can be created automatically in the photogrammetric process. It can be used as highly accurate elevation model for the airport area. The final verification of airport data is accomplished by independent surveyed runway- and taxiway- control-points. The concept of generation airport-data by means of remote sensing and photogrammetry was tested with the Stuttgart/Germany airport. The results proved that the final accuracy was within the accuracy specification defined by ICAO Annex 14. |
Zusätzliche Informationen: | Aviation Applications III |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau |
Hinterlegungsdatum: | 19 Nov 2008 16:00 |
Letzte Änderung: | 11 Okt 2024 07:05 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |