TU Darmstadt / ULB / TUbiblio

Dynamic plasmid populations in Halobacterium halobium.

Pfeifer, Felicitas ; Blaseio, U. ; Ghahraman, P. (1988)
Dynamic plasmid populations in Halobacterium halobium.
In: Journal of bacteriology, 170 (8)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Deletion events occurring in the major 150-kilobase-pair (kb) plasmid pHH1 of the archaebacterium Halobacterium halobium were investigated. We found four deletion derivatives of pHH1 in gas-vacuole-negative mutants, two of which (pHH23) [65 kb] and pHH4 [36 kb]) we analyzed. Both plasmids incurred more than one deletion, leading to the fusion of noncontiguous pHH1 sequences. pHH23 and pHH4 overlapped by only 4 kb of DNA sequence. A DNA fragment derived from this region was used to monitor the production of further deletion variants of pHH4. A total of 25 single colonies were characterized, 23 of which contained various smaller pHH4 derivatives. Of the 25 colonies investigated, 2 had lost pHH4 entirely and contained only large (greater than or equal to 100-kb) minor covalently closed circular DNAs. One colony contained the 17-kb deletion derivative pHH6 without any residual pHH4. The sizes of the pHH4 deletion derivatives, produced during the development of a single colony, ranged from 5 to 20 kb. In five colonies, pHH4 was altered by the integration of an additional insertion element. These insertions, as well as copies of the various insertion elements already present in pHH4, presumably serve as hot spots for recombination events which result in deletions. A second enrichment procedure led to the identification of colonies containing either a 16-kb (pHH7) or a 5-kb (pHH8) deletion derivative of pHH4 as the major plasmid. pHH8, the smallest plasmid found, contained the 4 kb of unique DNA sequence shared by pHH23 and pHH4, as well as some flanking pHH4 sequences. This result indicates that the 4-kb region contains the necessary sequences for plasmid maintenance and replication.

Typ des Eintrags: Artikel
Erschienen: 1988
Autor(en): Pfeifer, Felicitas ; Blaseio, U. ; Ghahraman, P.
Art des Eintrags: Bibliographie
Titel: Dynamic plasmid populations in Halobacterium halobium.
Sprache: Englisch
Publikationsjahr: 1988
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of bacteriology
Jahrgang/Volume einer Zeitschrift: 170
(Heft-)Nummer: 8
Kurzbeschreibung (Abstract):

Deletion events occurring in the major 150-kilobase-pair (kb) plasmid pHH1 of the archaebacterium Halobacterium halobium were investigated. We found four deletion derivatives of pHH1 in gas-vacuole-negative mutants, two of which (pHH23) [65 kb] and pHH4 [36 kb]) we analyzed. Both plasmids incurred more than one deletion, leading to the fusion of noncontiguous pHH1 sequences. pHH23 and pHH4 overlapped by only 4 kb of DNA sequence. A DNA fragment derived from this region was used to monitor the production of further deletion variants of pHH4. A total of 25 single colonies were characterized, 23 of which contained various smaller pHH4 derivatives. Of the 25 colonies investigated, 2 had lost pHH4 entirely and contained only large (greater than or equal to 100-kb) minor covalently closed circular DNAs. One colony contained the 17-kb deletion derivative pHH6 without any residual pHH4. The sizes of the pHH4 deletion derivatives, produced during the development of a single colony, ranged from 5 to 20 kb. In five colonies, pHH4 was altered by the integration of an additional insertion element. These insertions, as well as copies of the various insertion elements already present in pHH4, presumably serve as hot spots for recombination events which result in deletions. A second enrichment procedure led to the identification of colonies containing either a 16-kb (pHH7) or a 5-kb (pHH8) deletion derivative of pHH4 as the major plasmid. pHH8, the smallest plasmid found, contained the 4 kb of unique DNA sequence shared by pHH23 and pHH4, as well as some flanking pHH4 sequences. This result indicates that the 4-kb region contains the necessary sequences for plasmid maintenance and replication.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Microbiology and Archaea
?? fb10_mikrobiologie ??
10 Fachbereich Biologie
Hinterlegungsdatum: 14 Feb 2011 13:11
Letzte Änderung: 05 Mär 2013 09:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen