TU Darmstadt / ULB / TUbiblio

Boolean networks with robust and reliable trajectories

Schmal, Christoph ; Peixoto, Tiago ; Drossel, Barbara (2010)
Boolean networks with robust and reliable trajectories.
In: New Journal of Physics, 12 (11)
doi: 10.1088/1367-2630/12/11/113054
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We construct and investigate Boolean networks that follow a given reliable trajectory in state space, which is insensitive to fluctuations in the updating schedule and which is also robust against noise. Robustness is quantified as the probability that the dynamics return to the reliable trajectory after a perturbation of the state of a single node. In order to achieve high robustness, we navigate through the space of possible update functions by using an evolutionary algorithm. We constrain the networks to those having the minimum number of connections required to obtain the reliable trajectory. Surprisingly, we find that robustness always reaches values close to 100% during the evolutionary optimization process. The set of update functions can be evolved such that it differs only slightly from that of networks that were not optimized with respect to robustness. The state space of the optimized networks is dominated by the basin of attraction of the reliable trajectory.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Schmal, Christoph ; Peixoto, Tiago ; Drossel, Barbara
Art des Eintrags: Bibliographie
Titel: Boolean networks with robust and reliable trajectories
Sprache: Englisch
Publikationsjahr: 2010
Ort: London
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 11
Kollation: 13 Seiten
DOI: 10.1088/1367-2630/12/11/113054
Zugehörige Links:
Kurzbeschreibung (Abstract):

We construct and investigate Boolean networks that follow a given reliable trajectory in state space, which is insensitive to fluctuations in the updating schedule and which is also robust against noise. Robustness is quantified as the probability that the dynamics return to the reliable trajectory after a perturbation of the state of a single node. In order to achieve high robustness, we navigate through the space of possible update functions by using an evolutionary algorithm. We constrain the networks to those having the minimum number of connections required to obtain the reliable trajectory. Surprisingly, we find that robustness always reaches values close to 100% during the evolutionary optimization process. The set of update functions can be evolved such that it differs only slightly from that of networks that were not optimized with respect to robustness. The state space of the optimized networks is dominated by the basin of attraction of the reliable trajectory.

ID-Nummer: Artikel-ID: 113054
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Statistische Physik und komplexe Systeme
Hinterlegungsdatum: 09 Dez 2010 13:49
Letzte Änderung: 07 Mär 2024 10:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen