TU Darmstadt / ULB / TUbiblio

Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans.

Sievert, S. M. ; Scott, K. M. ; Klotz, M. G. ; Chain, P. S. G. ; Hauser, L. J. ; Hemp, J. ; Hügler, M. ; Land, M. ; Lapidus, A. ; Larimer, F. W. ; Lucas, S. ; Malfatti, S. A. ; Meyer, F. ; Paulsen, I. T. ; Ren, Q. ; Simon, J. (2008)
Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans.
In: Applied and environmental microbiology, 74 (4)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.

Typ des Eintrags: Artikel
Erschienen: 2008
Autor(en): Sievert, S. M. ; Scott, K. M. ; Klotz, M. G. ; Chain, P. S. G. ; Hauser, L. J. ; Hemp, J. ; Hügler, M. ; Land, M. ; Lapidus, A. ; Larimer, F. W. ; Lucas, S. ; Malfatti, S. A. ; Meyer, F. ; Paulsen, I. T. ; Ren, Q. ; Simon, J.
Art des Eintrags: Bibliographie
Titel: Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans.
Sprache: Englisch
Publikationsjahr: 2008
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied and environmental microbiology
Jahrgang/Volume einer Zeitschrift: 74
(Heft-)Nummer: 4
Kurzbeschreibung (Abstract):

Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Microbial Energy Conversion and Biotechnology
?? fb10_mikrobiologie ??
10 Fachbereich Biologie
Hinterlegungsdatum: 16 Dez 2010 08:32
Letzte Änderung: 05 Mär 2013 09:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen