TU Darmstadt / ULB / TUbiblio

Transport of C(4)-dicarboxylates in Wolinella succinogenes.

Ullmann, R. and Gross, R. and Simon, J. and Unden, G. and Kröger, A. (2000):
Transport of C(4)-dicarboxylates in Wolinella succinogenes.
In: Journal of bacteriology, pp. 5757-64, 182, (20), ISSN 0021-9193, [Article]

Abstract

C(4)-dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes, since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C(4)-dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10(3). The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the presence of internal Na(+), whereas the electrogenic antiport also operated in the absence of Na(+). In the absence of Na(+), no electrochemical proton potential (delta p) was measured across the membrane of cells catalyzing fumarate respiration. This suggests that the proton potential generated by fumarate respiration is dissipated by the concomitant electrogenic dicarboxylate antiport. Three gene loci (dcuA, dcuB, and dctPQM) encoding putative C(4)-dicarboxylate transporters were identified on the genome of W. succinogenes. The predicted gene products of dcuA and dcuB are similar to the Dcu transporters that are involved in the fumarate respiration of Escherichia coli with external C(4)-dicarboxylates. The genes dctP, -Q, and -M probably encode a binding-protein-dependent secondary uptake transporter for dicarboxylates. A mutant (DcuA(-) DcuB(-)) of W. succinogenes lacking the intact dcuA and dcuB genes grew by nitrate respiration with succinate as the carbon source but did not grow by fumarate respiration with fumarate, malate, or aspartate as substrates. The DcuA(-), DcuB(-), and DctQM(-) mutants grew by fumarate respiration as well as by nitrate respiration with succinate as the carbon source. Cells of the DcuA(-) DcuB(-) mutant performed fumarate respiration without generating a proton potential even in the presence of Na(+). This explains why the DcuA(-) DcuB(-) mutant does not grow by fumarate respiration. Growth by fumarate respiration appears to depend on the function of the Na(+)-dependent, electroneutral dicarboxylate antiport which is catalyzed exclusively by the Dcu transporters. Dicarboxylate transport via the electrogenic uniport is probably catalyzed by the DctPQM transporter and by a fourth, unknown transporter that may also operate as an electrogenic antiporter.

Item Type: Article
Erschienen: 2000
Creators: Ullmann, R. and Gross, R. and Simon, J. and Unden, G. and Kröger, A.
Title: Transport of C(4)-dicarboxylates in Wolinella succinogenes.
Language: English
Abstract:

C(4)-dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes, since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C(4)-dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10(3). The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the presence of internal Na(+), whereas the electrogenic antiport also operated in the absence of Na(+). In the absence of Na(+), no electrochemical proton potential (delta p) was measured across the membrane of cells catalyzing fumarate respiration. This suggests that the proton potential generated by fumarate respiration is dissipated by the concomitant electrogenic dicarboxylate antiport. Three gene loci (dcuA, dcuB, and dctPQM) encoding putative C(4)-dicarboxylate transporters were identified on the genome of W. succinogenes. The predicted gene products of dcuA and dcuB are similar to the Dcu transporters that are involved in the fumarate respiration of Escherichia coli with external C(4)-dicarboxylates. The genes dctP, -Q, and -M probably encode a binding-protein-dependent secondary uptake transporter for dicarboxylates. A mutant (DcuA(-) DcuB(-)) of W. succinogenes lacking the intact dcuA and dcuB genes grew by nitrate respiration with succinate as the carbon source but did not grow by fumarate respiration with fumarate, malate, or aspartate as substrates. The DcuA(-), DcuB(-), and DctQM(-) mutants grew by fumarate respiration as well as by nitrate respiration with succinate as the carbon source. Cells of the DcuA(-) DcuB(-) mutant performed fumarate respiration without generating a proton potential even in the presence of Na(+). This explains why the DcuA(-) DcuB(-) mutant does not grow by fumarate respiration. Growth by fumarate respiration appears to depend on the function of the Na(+)-dependent, electroneutral dicarboxylate antiport which is catalyzed exclusively by the Dcu transporters. Dicarboxylate transport via the electrogenic uniport is probably catalyzed by the DctPQM transporter and by a fourth, unknown transporter that may also operate as an electrogenic antiporter.

Journal or Publication Title: Journal of bacteriology
Volume: 182
Number: 20
Divisions: 10 Department of Biology > Microbial Energy Conversion and Biotechnology
?? fb10_mikrobiologie ??
10 Department of Biology
Date Deposited: 07 Dec 2010 15:09
Export:

Optionen (nur für Redakteure)

View Item View Item