TU Darmstadt / ULB / TUbiblio

Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum.

Cosentino, C. and Fischer-Schliebs, E. and Bertl, A. and Thiel, Gerhard and Homann, Ulrike (2010):
Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum.
In: The New phytologist, pp. 669-680, 186, (3), ISSN 1469-8137, [Online-Edition: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010....],
[Article]

Abstract

Salinity tolerance in plants involves controlled Na(+) transport at the site of Na(+) accumulation and intracellular Na(+) compartmentation. The focus of this study was the identification and analysis of the expression of Na(+)/H(+) antiporters in response to NaCl stress in one particular plant, the facultative halophyte Mesembryanthemum crystallinum Na(+)/H(+) antiporters of M. crystallinum were cloned by RACE-PCR from total mRNA of leaf mesophyll cells. Functional complementation of Saccharomyces cerevisiae and Escherichia coli mutants was performed. The kinetics of changes in the expression of antiporters were quantified by real-time PCR in leaves and roots. Five Na(+)/H(+) antiporters (McSOS1, McNhaD, McNHX1, McNHX2 and McNHX3) were cloned, representing the entire set of these transporters in M. crystallinum. The functionality of McSOS1, McHX1 and McNhaD was demonstrated in complementation experiments. Quantitative analysis revealed a temporal correlation between salt accumulation and expression levels of genes in leaves, but not in roots, which was most pronounced for McNhaD. Results suggest a physiological role of McSOS1, McNhaD and McNHX1 in Na(+) compartmentation during plant adaptation to high salinity. The study also provides evidence for salt-induced expression and function of the Na(+)/H(+) antiporter McNhaD in chloroplasts and demonstrates that the chloroplast is one of the compartments involved in the response of cells to salt stress.

Item Type: Article
Erschienen: 2010
Creators: Cosentino, C. and Fischer-Schliebs, E. and Bertl, A. and Thiel, Gerhard and Homann, Ulrike
Title: Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum.
Language: English
Abstract:

Salinity tolerance in plants involves controlled Na(+) transport at the site of Na(+) accumulation and intracellular Na(+) compartmentation. The focus of this study was the identification and analysis of the expression of Na(+)/H(+) antiporters in response to NaCl stress in one particular plant, the facultative halophyte Mesembryanthemum crystallinum Na(+)/H(+) antiporters of M. crystallinum were cloned by RACE-PCR from total mRNA of leaf mesophyll cells. Functional complementation of Saccharomyces cerevisiae and Escherichia coli mutants was performed. The kinetics of changes in the expression of antiporters were quantified by real-time PCR in leaves and roots. Five Na(+)/H(+) antiporters (McSOS1, McNhaD, McNHX1, McNHX2 and McNHX3) were cloned, representing the entire set of these transporters in M. crystallinum. The functionality of McSOS1, McHX1 and McNhaD was demonstrated in complementation experiments. Quantitative analysis revealed a temporal correlation between salt accumulation and expression levels of genes in leaves, but not in roots, which was most pronounced for McNhaD. Results suggest a physiological role of McSOS1, McNhaD and McNHX1 in Na(+) compartmentation during plant adaptation to high salinity. The study also provides evidence for salt-induced expression and function of the Na(+)/H(+) antiporter McNhaD in chloroplasts and demonstrates that the chloroplast is one of the compartments involved in the response of cells to salt stress.

Journal or Publication Title: The New phytologist
Volume: 186
Number: 3
Divisions: 10 Department of Biology
?? fb10_botanik ??
10 Department of Biology > Yeast Membrane Biology
10 Department of Biology > Plant Membrane Biophysics
10 Department of Biology > Plant Cell Biology
Date Deposited: 25 Nov 2010 15:24
Official URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010....
Identification Number: doi:10.1111/j.1469-8137.2010.03208.x
Export:

Optionen (nur für Redakteure)

View Item View Item