TU Darmstadt / ULB / TUbiblio

The limitations of the G1-S checkpoint.

Deckbar, Dorothee ; Stiff, Thomas ; Koch, Barbara ; Reis, Caroline ; Löbrich, Markus ; Jeggo, Penny A. (2010)
The limitations of the G1-S checkpoint.
In: Cancer research, 70 (11)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

It has been proposed that the G(1)-S checkpoint is the critical regulator of genomic stability, preventing the cell cycle progression of cells with a single DNA double-strand break. Using fluorescence-activated cell sorting analysis of asynchronous cells and microscopic analysis of asynchronous and synchronized cells, we show that full blockage of S-phase entry is only observed >4 hours after irradiation. The process is ataxia-telangiectasia mutated (ATM) dependent and Chk1/2 independent and can be activated throughout G(1) phase. By monitoring S-phase entry of irradiated synchronized cells, we show that the duration of arrest is dose dependent, with S-phase entry recommencing after arrest with kinetics similar to that observed in unirradiated cells. Thus, G(1)-S checkpoint arrest is not always permanent. Following exposure to higher doses (> or =2 Gy), G(1)-S arrest is inefficiently maintained, allowing progression of G(1)-phase cells into G(2) with elevated gammaH2AX foci and chromosome breaks. At early times after irradiation (< or =4 h), G(1)-S checkpoint arrest is not established but cells enter S phase at a reduced rate. This early slowing in S-phase entry is ATM and Chk2 dependent and detectable after 100 mGy, showing a novel and sensitive damage response. However, the time needed to establish G(1)-S checkpoint arrest provides a window when cells can progress to G(2) and form chromosome breaks. Our findings detail the efficacy of the G(1)-S checkpoint and define two significant limitations: At early times after IR, the activated checkpoint fails to efficiently prevent S-phase entry, and at later times, the checkpoint is inefficiently maintained.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Deckbar, Dorothee ; Stiff, Thomas ; Koch, Barbara ; Reis, Caroline ; Löbrich, Markus ; Jeggo, Penny A.
Art des Eintrags: Bibliographie
Titel: The limitations of the G1-S checkpoint.
Sprache: Englisch
Publikationsjahr: 2010
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Cancer research
Jahrgang/Volume einer Zeitschrift: 70
(Heft-)Nummer: 11
URL / URN: http://www.ncbi.nlm.nih.gov/pubmed/20460507
Kurzbeschreibung (Abstract):

It has been proposed that the G(1)-S checkpoint is the critical regulator of genomic stability, preventing the cell cycle progression of cells with a single DNA double-strand break. Using fluorescence-activated cell sorting analysis of asynchronous cells and microscopic analysis of asynchronous and synchronized cells, we show that full blockage of S-phase entry is only observed >4 hours after irradiation. The process is ataxia-telangiectasia mutated (ATM) dependent and Chk1/2 independent and can be activated throughout G(1) phase. By monitoring S-phase entry of irradiated synchronized cells, we show that the duration of arrest is dose dependent, with S-phase entry recommencing after arrest with kinetics similar to that observed in unirradiated cells. Thus, G(1)-S checkpoint arrest is not always permanent. Following exposure to higher doses (> or =2 Gy), G(1)-S arrest is inefficiently maintained, allowing progression of G(1)-phase cells into G(2) with elevated gammaH2AX foci and chromosome breaks. At early times after irradiation (< or =4 h), G(1)-S checkpoint arrest is not established but cells enter S phase at a reduced rate. This early slowing in S-phase entry is ATM and Chk2 dependent and detectable after 100 mGy, showing a novel and sensitive damage response. However, the time needed to establish G(1)-S checkpoint arrest provides a window when cells can progress to G(2) and form chromosome breaks. Our findings detail the efficacy of the G(1)-S checkpoint and define two significant limitations: At early times after IR, the activated checkpoint fails to efficiently prevent S-phase entry, and at later times, the checkpoint is inefficiently maintained.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Radiation Biology and DNA Repair
?? fb10_zoologie ??
10 Fachbereich Biologie
Hinterlegungsdatum: 07 Sep 2010 13:30
Letzte Änderung: 05 Mär 2013 09:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen