Wagner, Tim (2008)
Optimal One-Point Approximation of Stochastic Heat Equations with Additive Noise.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Let X be the mild solution of a stochastic heat equation taking values in a Hilbert space H=L^2((0,1)^d) driven by a (cylindrical) Brownian motion W with values in H. We study the strong approximation of X at a fixed time point t=T for equations with additive noise. The algorithms we consider, are based on evaluations of a finite number of one-dimensional components of W at a finite number of time nodes. For the first time, non-equidistant time discretizations are considered. We analyze the smallest possible error obtained by arbitrary algorithms that use at most a total of N evaluations. The main results of this thesis are the derivation of the weak asymptotic of these minimal errors, depending on the spatial dimension d and the smoothness of W, and further the construction of asymptotically optimal approximations. In particular, we show that asymptotic optimality, in general, is only achieved by approximation schemes based on non-equidistant time discretizations. We complete our analytical results with simulation studies.
Typ des Eintrags: | Dissertation | ||||||
---|---|---|---|---|---|---|---|
Erschienen: | 2008 | ||||||
Autor(en): | Wagner, Tim | ||||||
Art des Eintrags: | Erstveröffentlichung | ||||||
Titel: | Optimal One-Point Approximation of Stochastic Heat Equations with Additive Noise | ||||||
Sprache: | Englisch | ||||||
Referenten: | Ritter, Prof. Dr. Klaus ; Geiß, Prof. Dr. Stefan | ||||||
Publikationsjahr: | 8 November 2008 | ||||||
Ort: | Darmstadt | ||||||
Verlag: | Technische Universität | ||||||
Datum der mündlichen Prüfung: | 2007 | ||||||
URL / URN: | urn:nbn:de:tuda-tuprints-11703 | ||||||
Kurzbeschreibung (Abstract): | Let X be the mild solution of a stochastic heat equation taking values in a Hilbert space H=L^2((0,1)^d) driven by a (cylindrical) Brownian motion W with values in H. We study the strong approximation of X at a fixed time point t=T for equations with additive noise. The algorithms we consider, are based on evaluations of a finite number of one-dimensional components of W at a finite number of time nodes. For the first time, non-equidistant time discretizations are considered. We analyze the smallest possible error obtained by arbitrary algorithms that use at most a total of N evaluations. The main results of this thesis are the derivation of the weak asymptotic of these minimal errors, depending on the spatial dimension d and the smoothness of W, and further the construction of asymptotically optimal approximations. In particular, we show that asymptotic optimality, in general, is only achieved by approximation schemes based on non-equidistant time discretizations. We complete our analytical results with simulation studies. |
||||||
Alternatives oder übersetztes Abstract: |
|
||||||
Freie Schlagworte: | Stochastic heat equations, Strong approximation, Minimal errors, Lower bounds, Non-equidistant time discretization | ||||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Stochastik |
||||||
Hinterlegungsdatum: | 21 Nov 2008 10:17 | ||||||
Letzte Änderung: | 26 Aug 2018 21:25 | ||||||
PPN: | |||||||
Referenten: | Ritter, Prof. Dr. Klaus ; Geiß, Prof. Dr. Stefan | ||||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 2007 | ||||||
Export: | |||||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |