TU Darmstadt / ULB / TUbiblio

Meta Analysis of Empirical Deterrence Studies: an explorative contest

Rupp, Thomas (2006)
Meta Analysis of Empirical Deterrence Studies: an explorative contest.
Report, Bibliographie

Kurzbeschreibung (Abstract)

A sample of 200 studies empirically analyzing deterrence in some way is evaluated. Various methods of data mining (stepwise regressions, Extreme Bounds Analysis, Bayesian Model Averaging, manual and naive selections) are used to explore different influences of various variables on the results of each study. The preliminary results of these methods are tested against each other in a competition of methodology to evaluate their performance in forecasting and fitting the data and to conclude which methods should be favored in an upcoming extensive meta-analysis. It seems to be the case that restrictive methods (which select fewer variables) are to be preferred when predicting data ex ante, and less parsimonious methods (which select more variables) when data has to be fitted (ex post). In the former case forward stepwise regression or Bayesian Model Selection perform very well, whereas backward stepwise regression and Extreme Bounds Analysis are to be preferred in the latter case.

Typ des Eintrags: Report
Erschienen: 2006
Autor(en): Rupp, Thomas
Art des Eintrags: Bibliographie
Titel: Meta Analysis of Empirical Deterrence Studies: an explorative contest
Sprache: Englisch
Publikationsjahr: Juni 2006
Ort: Darmstadt
Reihe: Darmstadt Discussion Papers in Economics
Band einer Reihe: 174
URL / URN: http://econstor.eu/bitstream/10419/32091/1/516793977.PDF
Kurzbeschreibung (Abstract):

A sample of 200 studies empirically analyzing deterrence in some way is evaluated. Various methods of data mining (stepwise regressions, Extreme Bounds Analysis, Bayesian Model Averaging, manual and naive selections) are used to explore different influences of various variables on the results of each study. The preliminary results of these methods are tested against each other in a competition of methodology to evaluate their performance in forecasting and fitting the data and to conclude which methods should be favored in an upcoming extensive meta-analysis. It seems to be the case that restrictive methods (which select fewer variables) are to be preferred when predicting data ex ante, and less parsimonious methods (which select more variables) when data has to be fitted (ex post). In the former case forward stepwise regression or Bayesian Model Selection perform very well, whereas backward stepwise regression and Extreme Bounds Analysis are to be preferred in the latter case.

Freie Schlagworte: meta analysis, data mining, deterrence, criminometrics
Zusätzliche Informationen:

JEL classification: C81, K14, K42

Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Volkswirtschaftliche Fachgebiete
Hinterlegungsdatum: 14 Okt 2009 13:19
Letzte Änderung: 29 Mai 2016 21:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen