TU Darmstadt / ULB / TUbiblio

Deposition of silicon-containing diamond-like carbon films by plasma-enhanced chemical vapour deposition

Baba, Koumei ; Hatada, Ruriko ; Flege, Stefan ; Ensinger, Wolfgang (2009)
Deposition of silicon-containing diamond-like carbon films by plasma-enhanced chemical vapour deposition.
In: Surface and Coatings Technology, 203 (17-18)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Silicon-containing diamond-like carbon (Si-DLC) films were prepared on silicon wafer substrates by DC glow discharge. Acetylene and mixture with tetramethylsilane gases were used as working gases for the plasma. A negative DC voltage was applied to the substrate holder. The DC voltage was changed in the range from − 1 kV to − 4 kV. The surface morphology of the films and the film thickness were observed by scanning electron microscopy. The compositions of the Si-containing DLC films were examined by X-ray photoelectron spectroscopy. The film structure was characterized by Raman spectroscopy. A ball-on-disc test with 2 N load was employed to obtain information about the friction properties and sliding wear resistance of the films. The films were annealed at 723 K, 773 K and 873 K in ambient air for 30 min in order to estimate the thermal stability of the DLC films. The surface roughness of the Si-containing DLC films was very low and no special structure was observed. The deposition rate increased linearly with Si content. The positions of D- and G-bands in Raman spectra decreased with Si content. The integrated intensity ratios ID/IG of the Si-containing DLC films decreased with Si content. A very low friction coefficient of 0.03 was obtained for a 24 at.% Si-containing DLC film. The heat resistivity of DLC films can be improved by Si addition into the DLC films.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Baba, Koumei ; Hatada, Ruriko ; Flege, Stefan ; Ensinger, Wolfgang
Art des Eintrags: Bibliographie
Titel: Deposition of silicon-containing diamond-like carbon films by plasma-enhanced chemical vapour deposition
Sprache: Englisch
Publikationsjahr: 15 Juni 2009
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Surface and Coatings Technology
Jahrgang/Volume einer Zeitschrift: 203
(Heft-)Nummer: 17-18
URL / URN: http://www.sciencedirect.com/science/article/B6TVV-4VT0WYP-6...
Kurzbeschreibung (Abstract):

Silicon-containing diamond-like carbon (Si-DLC) films were prepared on silicon wafer substrates by DC glow discharge. Acetylene and mixture with tetramethylsilane gases were used as working gases for the plasma. A negative DC voltage was applied to the substrate holder. The DC voltage was changed in the range from − 1 kV to − 4 kV. The surface morphology of the films and the film thickness were observed by scanning electron microscopy. The compositions of the Si-containing DLC films were examined by X-ray photoelectron spectroscopy. The film structure was characterized by Raman spectroscopy. A ball-on-disc test with 2 N load was employed to obtain information about the friction properties and sliding wear resistance of the films. The films were annealed at 723 K, 773 K and 873 K in ambient air for 30 min in order to estimate the thermal stability of the DLC films. The surface roughness of the Si-containing DLC films was very low and no special structure was observed. The deposition rate increased linearly with Si content. The positions of D- and G-bands in Raman spectra decreased with Si content. The integrated intensity ratios ID/IG of the Si-containing DLC films decreased with Si content. A very low friction coefficient of 0.03 was obtained for a 24 at.% Si-containing DLC film. The heat resistivity of DLC films can be improved by Si addition into the DLC films.

Freie Schlagworte: DLC; Silicon incorporation; Raman spectroscopy; Friction coefficient
Zusätzliche Informationen:

SMMIB-15, 15th International Conference on Surface Modification of Materials by Ion Beams

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 06 Jul 2009 13:49
Letzte Änderung: 05 Mär 2013 09:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen