TU Darmstadt / ULB / TUbiblio

Parameter estimation in linear models based on outage probability minimization

Vorobyov, S. A. ; Eldar, Y. ; Gershman, A. B. (2006)
Parameter estimation in linear models based on outage probability minimization.
2006 Fortieth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA (29.10.2006-01.11.2006)
doi: 10.1109/ACSSC.2006.354991
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

A traditional approach to estimating random unknown signal parameters in a noisy linear model aims at minimizing the mean squared error (MSE) averaged over both the random signal parameters and noise realizations. In this paper, we develop a new estimation approach which minimizes the MSE averaged over the noise only. Moreover, in contrast to the traditional approach, the MSE is minimized only for the most favorable signal parameter realizations. It is assumed that the second- order statistics of the unknown signal parameter and noise vectors are precisely known and the noise is Gaussian, while the probability density function (pdf) of the unknown signal parameter vector may be Gaussian or completely unknown. Two different linear estimators are derived for the latter two cases.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Vorobyov, S. A. ; Eldar, Y. ; Gershman, A. B.
Art des Eintrags: Bibliographie
Titel: Parameter estimation in linear models based on outage probability minimization
Sprache: Englisch
Publikationsjahr: 2006
Ort: Piscataway
Verlag: IEEE
Buchtitel: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers
Veranstaltungstitel: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers
Veranstaltungsort: Pacific Grove, CA
Veranstaltungsdatum: 29.10.2006-01.11.2006
DOI: 10.1109/ACSSC.2006.354991
Kurzbeschreibung (Abstract):

A traditional approach to estimating random unknown signal parameters in a noisy linear model aims at minimizing the mean squared error (MSE) averaged over both the random signal parameters and noise realizations. In this paper, we develop a new estimation approach which minimizes the MSE averaged over the noise only. Moreover, in contrast to the traditional approach, the MSE is minimized only for the most favorable signal parameter realizations. It is assumed that the second- order statistics of the unknown signal parameter and noise vectors are precisely known and the noise is Gaussian, while the probability density function (pdf) of the unknown signal parameter vector may be Gaussian or completely unknown. Two different linear estimators are derived for the latter two cases.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 20 Nov 2008 08:26
Letzte Änderung: 21 Nov 2024 09:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen