TU Darmstadt / ULB / TUbiblio

Rotor dynamic analysis of asynchronous machines including the Finite-Element-Method for engineering low vibration motors

Werner, U. ; Binder, A. (2006)
Rotor dynamic analysis of asynchronous machines including the Finite-Element-Method for engineering low vibration motors.
International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006). Taormina, Italy (23.05.2006-26.05.2006)
doi: 10.1109/SPEEDAM.2006.1649750
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In addition to the mechanical excitations, such as unbalance, also electromagnetic forces due to eccentricity cause vibrations in asynchronous machines. For slip-ring induction machines without parallel windings in the rotor and stator the magnetic spring, which describes the magnetic pull due to these eccentricity fields, is independent of the kind of eccentricity - static and dynamic eccentricity - and independent of the orbit of the rotor. For squirrel cage rotors the static and dynamic eccentricity as well as the orbit of the rotor influence the value of the magnetic spring. A theoretical rotor model is presented to describe the orbits of the rotor for three different kinds of dynamic eccentricity excitation- magnetic eccentricity, eccentricity of the rotor mass and a bent shaft. A finite-element calculation of the undamped magnetic spring value is shown as well as a finite-element rotor dynamic calculation of a 2-pole asynchronous machine with a single sided rotor core eccentricity. With the separation of the calculated shaft displacements the influence of each excitation on the shaft vibration can be evaluated, and the rotor design can be optimized for the operating speed range

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Werner, U. ; Binder, A.
Art des Eintrags: Bibliographie
Titel: Rotor dynamic analysis of asynchronous machines including the Finite-Element-Method for engineering low vibration motors
Sprache: Englisch
Publikationsjahr: 2006
Ort: Piscataway
Verlag: IEEE
Buchtitel: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006
Veranstaltungstitel: International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006)
Veranstaltungsort: Taormina, Italy
Veranstaltungsdatum: 23.05.2006-26.05.2006
DOI: 10.1109/SPEEDAM.2006.1649750
Kurzbeschreibung (Abstract):

In addition to the mechanical excitations, such as unbalance, also electromagnetic forces due to eccentricity cause vibrations in asynchronous machines. For slip-ring induction machines without parallel windings in the rotor and stator the magnetic spring, which describes the magnetic pull due to these eccentricity fields, is independent of the kind of eccentricity - static and dynamic eccentricity - and independent of the orbit of the rotor. For squirrel cage rotors the static and dynamic eccentricity as well as the orbit of the rotor influence the value of the magnetic spring. A theoretical rotor model is presented to describe the orbits of the rotor for three different kinds of dynamic eccentricity excitation- magnetic eccentricity, eccentricity of the rotor mass and a bent shaft. A finite-element calculation of the undamped magnetic spring value is shown as well as a finite-element rotor dynamic calculation of a 2-pole asynchronous machine with a single sided rotor core eccentricity. With the separation of the calculated shaft displacements the influence of each excitation on the shaft vibration can be evaluated, and the rotor design can be optimized for the operating speed range

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektrische Energiewandlung > Elektrische Energiewandlung
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektrische Energiewandlung
Hinterlegungsdatum: 20 Nov 2008 08:25
Letzte Änderung: 26 Nov 2024 11:30
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen