TU Darmstadt / ULB / TUbiblio

Efficient clustering and matching for object glass

Leibe, Bastian ; Mikolajczyk, Krystian ; Schiele, Bernt (2006)
Efficient clustering and matching for object glass.
17th British Machine Vision Conference (BMVC06). Edinburgh (04.09.2007-07.09.2007)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we address the problem of building object class representations based on local features and fast matching in a large database. We propose an efficient algorithm for hierarchical agglomerative clustering. We examine different agglomerative and partitional clustering strategies and compare the quality of obtained clusters. Our combination of partitional-agglomerative clustering gives significant improvement in terms of efficiency while maintaining the same quality of clusters. We also propose a method for building data structures for fast matching in high dimensional feature spaces. These improvements allow to deal with large sets of training data typically used in recognition of multiple object classes.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Leibe, Bastian ; Mikolajczyk, Krystian ; Schiele, Bernt
Art des Eintrags: Bibliographie
Titel: Efficient clustering and matching for object glass
Sprache: Englisch
Publikationsjahr: 2006
Ort: Edinburgh
Verlag: BMVA
Buchtitel: British Machine Vision Conference 2006, BMVC06. Proceedings
Veranstaltungstitel: 17th British Machine Vision Conference (BMVC06)
Veranstaltungsort: Edinburgh
Veranstaltungsdatum: 04.09.2007-07.09.2007
Kurzbeschreibung (Abstract):

In this paper we address the problem of building object class representations based on local features and fast matching in a large database. We propose an efficient algorithm for hierarchical agglomerative clustering. We examine different agglomerative and partitional clustering strategies and compare the quality of obtained clusters. Our combination of partitional-agglomerative clustering gives significant improvement in terms of efficiency while maintaining the same quality of clusters. We also propose a method for building data structures for fast matching in high dimensional feature spaces. These improvements allow to deal with large sets of training data typically used in recognition of multiple object classes.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Multimodale Interaktive Systeme
Hinterlegungsdatum: 20 Nov 2008 08:25
Letzte Änderung: 28 Nov 2024 11:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen