TU Darmstadt / ULB / TUbiblio

Interleaving object categorization and segmentation

Leibe, Bastian ; Schiele, Bernt (2006)
Interleaving object categorization and segmentation.
In: Cognitive vision systems : sampling the spectrum of approaches
doi: 10.1007/11414353_10
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

In this chapter, we aim to connect the areas of object categorization and figure-ground segmentation. We present a novel method for the categorization of unfamiliar objects in difficult real-world scenes. The method generates object hypotheses without prior segmentation, which in turn can be used to obtain a category-specific figure-ground segmentation. In particular, the proposed approach uses a probabilistic formulation to incorporate knowledge about the recognized category as well as the supporting information in the image to segment the object from the background. This segmentation can then be used for hypothesis verification, to further improve recognition performance. Experimental results show the capacity of the approach to categorize and segment object categories as diverse as cars and cows.

Typ des Eintrags: Buchkapitel
Erschienen: 2006
Autor(en): Leibe, Bastian ; Schiele, Bernt
Art des Eintrags: Bibliographie
Titel: Interleaving object categorization and segmentation
Sprache: Englisch
Publikationsjahr: 2006
Ort: Berlin
Verlag: Springer
Buchtitel: Cognitive vision systems : sampling the spectrum of approaches
Reihe: Lecture notes in computer science
Band einer Reihe: 3948
DOI: 10.1007/11414353_10
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this chapter, we aim to connect the areas of object categorization and figure-ground segmentation. We present a novel method for the categorization of unfamiliar objects in difficult real-world scenes. The method generates object hypotheses without prior segmentation, which in turn can be used to obtain a category-specific figure-ground segmentation. In particular, the proposed approach uses a probabilistic formulation to incorporate knowledge about the recognized category as well as the supporting information in the image to segment the object from the background. This segmentation can then be used for hypothesis verification, to further improve recognition performance. Experimental results show the capacity of the approach to categorize and segment object categories as diverse as cars and cows.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Multimodale Interaktive Systeme
Hinterlegungsdatum: 20 Nov 2008 08:25
Letzte Änderung: 29 Nov 2024 09:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen