TU Darmstadt / ULB / TUbiblio

Unsupervised Discovery of Structure in Activity Data using Multiple Eigenspaces

Huynh, Tâm ; Schiele, Bernt (2006)
Unsupervised Discovery of Structure in Activity Data using Multiple Eigenspaces.
Location- and context-awareness : second international workshop (LoCA 2006). Dublin, Ireland (10.05.2006-11.05.2006)
doi: 10.1007/11752967_11
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we propose a novel scheme for unsupervised detection of structure in activity data. Our method is based upon an algorithm that represents data in terms of multiple low-dimensional eigenspaces. We describe the algorithm and propose an extension that allows to handle multiple time scales. The validity of the approach is demonstrated on several data sets and using two types of acceleration features. Finally, we report on experiments that indicate that our approach can yield recognition rates comparable to other, supervised approaches.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Huynh, Tâm ; Schiele, Bernt
Art des Eintrags: Bibliographie
Titel: Unsupervised Discovery of Structure in Activity Data using Multiple Eigenspaces
Sprache: Englisch
Publikationsjahr: 2006
Ort: Berlin
Verlag: Springer
Buchtitel: Location- and Context-Awareness (LoCA 2006)
Reihe: Lecture notes in computer science
Band einer Reihe: 39
Veranstaltungstitel: Location- and context-awareness : second international workshop (LoCA 2006)
Veranstaltungsort: Dublin, Ireland
Veranstaltungsdatum: 10.05.2006-11.05.2006
DOI: 10.1007/11752967_11
Kurzbeschreibung (Abstract):

In this paper we propose a novel scheme for unsupervised detection of structure in activity data. Our method is based upon an algorithm that represents data in terms of multiple low-dimensional eigenspaces. We describe the algorithm and propose an extension that allows to handle multiple time scales. The validity of the approach is demonstrated on several data sets and using two types of acceleration features. Finally, we report on experiments that indicate that our approach can yield recognition rates comparable to other, supervised approaches.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Multimodale Interaktive Systeme
Hinterlegungsdatum: 20 Nov 2008 08:25
Letzte Änderung: 29 Nov 2024 09:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen