Buchmann, Johannes ; Pyshkin, Andrei ; Weinmann, Ralf-Philipp (2006)
Block Ciphers Sensitive to Gröbner Basis Attacks.
RSA Conference 2006. San Jose, CA, USA (February 13-17, 2005)
doi: 10.1007/11605805_20
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We construct and analyze Feistel and SPN ciphers that have a sound design strategy against linear and differential attacks but for which the encryption process can be described by very simple polynomial equations. For a block and key size of 128 bits, we present ciphers for which practical Gröbner basis attacks can recover the full cipher key requiring only a minimal number of plaintext/ciphertext pairs. We show how Gröbner bases for a subset of these ciphers can be constructed with neglegible computational effort. This reduces the key–recovery problem to a Gröbner basis conversion problem. By bounding the running time of a Gröbner basis conversion algorithm, FGLM, we demonstrate the existence of block ciphers resistant against differential and linear cryptanalysis but vulnerable against Gröbner basis attacks.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2006 |
Autor(en): | Buchmann, Johannes ; Pyshkin, Andrei ; Weinmann, Ralf-Philipp |
Art des Eintrags: | Bibliographie |
Titel: | Block Ciphers Sensitive to Gröbner Basis Attacks |
Sprache: | Deutsch |
Publikationsjahr: | 2006 |
Ort: | Berlin |
Verlag: | Springer |
Buchtitel: | Topics in Cryptology-CT-RSA 2006: The Cryptographers' Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005, Proceedings |
Reihe: | Lecture Notes in Computer Science |
Band einer Reihe: | 3860 |
Veranstaltungstitel: | RSA Conference 2006 |
Veranstaltungsort: | San Jose, CA, USA |
Veranstaltungsdatum: | February 13-17, 2005 |
DOI: | 10.1007/11605805_20 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We construct and analyze Feistel and SPN ciphers that have a sound design strategy against linear and differential attacks but for which the encryption process can be described by very simple polynomial equations. For a block and key size of 128 bits, we present ciphers for which practical Gröbner basis attacks can recover the full cipher key requiring only a minimal number of plaintext/ciphertext pairs. We show how Gröbner bases for a subset of these ciphers can be constructed with neglegible computational effort. This reduces the key–recovery problem to a Gröbner basis conversion problem. By bounding the running time of a Gröbner basis conversion algorithm, FGLM, we demonstrate the existence of block ciphers resistant against differential and linear cryptanalysis but vulnerable against Gröbner basis attacks. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra |
Hinterlegungsdatum: | 20 Nov 2008 08:24 |
Letzte Änderung: | 03 Dez 2024 09:31 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |