TU Darmstadt / ULB / TUbiblio

Block Ciphers Sensitive to Gröbner Basis Attacks

Buchmann, Johannes ; Pyshkin, Andrei ; Weinmann, Ralf-Philipp (2006)
Block Ciphers Sensitive to Gröbner Basis Attacks.
RSA Conference 2006. San Jose, CA, USA (February 13-17, 2005)
doi: 10.1007/11605805_20
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We construct and analyze Feistel and SPN ciphers that have a sound design strategy against linear and differential attacks but for which the encryption process can be described by very simple polynomial equations. For a block and key size of 128 bits, we present ciphers for which practical Gröbner basis attacks can recover the full cipher key requiring only a minimal number of plaintext/ciphertext pairs. We show how Gröbner bases for a subset of these ciphers can be constructed with neglegible computational effort. This reduces the key–recovery problem to a Gröbner basis conversion problem. By bounding the running time of a Gröbner basis conversion algorithm, FGLM, we demonstrate the existence of block ciphers resistant against differential and linear cryptanalysis but vulnerable against Gröbner basis attacks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Buchmann, Johannes ; Pyshkin, Andrei ; Weinmann, Ralf-Philipp
Art des Eintrags: Bibliographie
Titel: Block Ciphers Sensitive to Gröbner Basis Attacks
Sprache: Deutsch
Publikationsjahr: 2006
Ort: Berlin
Verlag: Springer
Buchtitel: Topics in Cryptology-CT-RSA 2006: The Cryptographers' Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005, Proceedings
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 3860
Veranstaltungstitel: RSA Conference 2006
Veranstaltungsort: San Jose, CA, USA
Veranstaltungsdatum: February 13-17, 2005
DOI: 10.1007/11605805_20
Zugehörige Links:
Kurzbeschreibung (Abstract):

We construct and analyze Feistel and SPN ciphers that have a sound design strategy against linear and differential attacks but for which the encryption process can be described by very simple polynomial equations. For a block and key size of 128 bits, we present ciphers for which practical Gröbner basis attacks can recover the full cipher key requiring only a minimal number of plaintext/ciphertext pairs. We show how Gröbner bases for a subset of these ciphers can be constructed with neglegible computational effort. This reduces the key–recovery problem to a Gröbner basis conversion problem. By bounding the running time of a Gröbner basis conversion algorithm, FGLM, we demonstrate the existence of block ciphers resistant against differential and linear cryptanalysis but vulnerable against Gröbner basis attacks.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra
Hinterlegungsdatum: 20 Nov 2008 08:24
Letzte Änderung: 03 Dez 2024 09:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen