TU Darmstadt / ULB / TUbiblio

The boundedness problem for monadic universal first-order logic

Otto, Martin (2006)
The boundedness problem for monadic universal first-order logic.
21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006). Seattle, WA (12.08.2006-15.08.2006)
doi: https://doi.ieeecomputersociety.org/10.1109/LICS.2006.50
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We consider the monadic boundedness problem for least fixed points over FO formulae as a decision problem: Given a formula (X, x), positive in X, decide whether there is a uniform finite bound on the least fixed point recursion based on . Few fragments of FO are known to have a decidable boundedness problem; boundedness is known to be undecidable for many fragments. We here show that monadic boundedness is decidable for purely universal FO formulae without equality in which each non-recursive predicate occurs in just one polarity (e.g., only negatively). The restrictions are shown to be essential: waving either the polarity constraint or allowing positive occurrences of equality, the monadic boundedness problem for universal formulae becomes undecidable. The main result is based on a model theoretic analysis involving ideas from modal and guarded logics and...

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Otto, Martin
Art des Eintrags: Bibliographie
Titel: The boundedness problem for monadic universal first-order logic
Sprache: Englisch
Publikationsjahr: 2006
Ort: Los Alamitos, Calif
Verlag: IEEE Computer Society
Buchtitel: 21st Annual IEEE Symposium on Logic in Computer Science
Veranstaltungstitel: 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006)
Veranstaltungsort: Seattle, WA
Veranstaltungsdatum: 12.08.2006-15.08.2006
DOI: https://doi.ieeecomputersociety.org/10.1109/LICS.2006.50
Kurzbeschreibung (Abstract):

We consider the monadic boundedness problem for least fixed points over FO formulae as a decision problem: Given a formula (X, x), positive in X, decide whether there is a uniform finite bound on the least fixed point recursion based on . Few fragments of FO are known to have a decidable boundedness problem; boundedness is known to be undecidable for many fragments. We here show that monadic boundedness is decidable for purely universal FO formulae without equality in which each non-recursive predicate occurs in just one polarity (e.g., only negatively). The restrictions are shown to be essential: waving either the polarity constraint or allowing positive occurrences of equality, the monadic boundedness problem for universal formulae becomes undecidable. The main result is based on a model theoretic analysis involving ideas from modal and guarded logics and...

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
Hinterlegungsdatum: 20 Nov 2008 08:24
Letzte Änderung: 04 Dez 2024 11:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen