TU Darmstadt / ULB / TUbiblio

Historical load curve correction for short-term load forecasting

Yang, J. ; Stenzel, Jürgen (2005)
Historical load curve correction for short-term load forecasting.
International Power Engineering Conference (IPEC 2005). Singapore (29.11.2005-02.12.2005)
doi: 10.1109/IPEC.2005.206875
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Short-term load forecasting (STLF) is a significant task for power system operation. The existence of bad data in historical load curve affects the precision of load forecasting result. This paper presents the second order difference method to detect the bad data, eliminate them and evaluate the real data. To decrease the effect of impulse load on the prediction result, weighted least square quadratic fitting is proposed to filter the curve. K-means clustering and support vector machine method are employed to forecast the future load. The proposed method is successfully applied to an actual power system.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Yang, J. ; Stenzel, Jürgen
Art des Eintrags: Bibliographie
Titel: Historical load curve correction for short-term load forecasting
Sprache: Englisch
Publikationsjahr: 2005
Ort: Piscataway, NJ
Verlag: IEEE Operations Center
Buchtitel: 2005 International Power Engineering Conference (IPEC)
Veranstaltungstitel: International Power Engineering Conference (IPEC 2005)
Veranstaltungsort: Singapore
Veranstaltungsdatum: 29.11.2005-02.12.2005
DOI: 10.1109/IPEC.2005.206875
Kurzbeschreibung (Abstract):

Short-term load forecasting (STLF) is a significant task for power system operation. The existence of bad data in historical load curve affects the precision of load forecasting result. This paper presents the second order difference method to detect the bad data, eliminate them and evaluate the real data. To decrease the effect of impulse load on the prediction result, weighted least square quadratic fitting is proposed to filter the curve. K-means clustering and support vector machine method are employed to forecast the future load. The proposed method is successfully applied to an actual power system.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 20 Nov 2008 08:24
Letzte Änderung: 06 Dez 2024 08:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen