TU Darmstadt / ULB / TUbiblio

Adaptive M-estimators for use in structured and unstructured robust covariance estimation

Brown, Christopher L. ; Brcich, Ramon F. ; Debes, C. (2005)
Adaptive M-estimators for use in structured and unstructured robust covariance estimation.
IEEE/SP 13th Workshop on Statistical Signal Processing, 2005. Bordeaux, France (17.07.2005-20.07.2005)
doi: 10.1109/SSP.2005.1628660
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Covariance estimation is necessary in many applications such as source detection in array processing. Unfortunately, the sample covariance estimator is not robust. Here we investigate two broad approaches to robust covariance matrix estimation. The first is a model-free element-wise procedure, while the second is a structured approach based on pre-whitening. Both approaches utilize a robust one-dimensional scale estimator. It is the choice of this scale estimator and its effect on the overall covariance estimator that is the main purpose of this study. An adaptive M-estimator of scale is shown to have several advantages. Depending on the final comparison criterion, its use in a structured or element-wise covariance matrix estimator can lead to improved, robust performance.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Brown, Christopher L. ; Brcich, Ramon F. ; Debes, C.
Art des Eintrags: Bibliographie
Titel: Adaptive M-estimators for use in structured and unstructured robust covariance estimation
Sprache: Englisch
Publikationsjahr: 2005
Ort: Piscataway
Verlag: IEEE
Buchtitel: IEEE/SP 13th Workshop on Statistical Signal Processing, 2005
Veranstaltungstitel: IEEE/SP 13th Workshop on Statistical Signal Processing, 2005
Veranstaltungsort: Bordeaux, France
Veranstaltungsdatum: 17.07.2005-20.07.2005
DOI: 10.1109/SSP.2005.1628660
Kurzbeschreibung (Abstract):

Covariance estimation is necessary in many applications such as source detection in array processing. Unfortunately, the sample covariance estimator is not robust. Here we investigate two broad approaches to robust covariance matrix estimation. The first is a model-free element-wise procedure, while the second is a structured approach based on pre-whitening. Both approaches utilize a robust one-dimensional scale estimator. It is the choice of this scale estimator and its effect on the overall covariance estimator that is the main purpose of this study. An adaptive M-estimator of scale is shown to have several advantages. Depending on the final comparison criterion, its use in a structured or element-wise covariance matrix estimator can lead to improved, robust performance.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 20 Nov 2008 08:22
Letzte Änderung: 10 Jan 2025 09:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen