TU Darmstadt / ULB / TUbiblio

The role of diffusion on SCLC transport in double injection devices

Neumann, Frederik ; Genenko, Yuri A. ; Schmechel, Roland ; Seggern, Heinz von (2005)
The role of diffusion on SCLC transport in double injection devices.
In: Synthetic metals, 150 (3)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A theoretical study of SCLC transport in double injection insulators is presented. It will be demonstrated, that the inclusion of charge carrier diffusion, neglected in many previous studies of transport in organic light emitting diodes (OLEDs), is essential to obtain physical meaningful spatial charge carrier densities and field distributions. Only the knowledge of such correct spatial distributions enables one to compute the correct position of the charge carrier recombination zone. In previous calculations without diffusion the recombination process often takes place in the vicinity of both electrodes, even for equal mobilities of holes and electrons. In the present calculation including diffusion it is demonstrated that only one recombination zone exists. For equal mobilities of electrons and holes the recombination zone is found as expected in the centre of the device whereas for different mobility values it may be strongly shifted to one of the electrodes. The resulting I–V characteristics indicate that, in double injection devices, the well-known Mott–Gurney law holds only at sufficiently high voltages and only if recombination is taken into account. For small voltages, an ohmic-like behavior is observed in any case, however, if no recombination is assumed a transition to an I ∼ V3 law is obtained for higher voltages. Due to the inclusion of diffusion, all I–V characteristics exhibit temperature dependence.

Typ des Eintrags: Artikel
Erschienen: 2005
Autor(en): Neumann, Frederik ; Genenko, Yuri A. ; Schmechel, Roland ; Seggern, Heinz von
Art des Eintrags: Bibliographie
Titel: The role of diffusion on SCLC transport in double injection devices
Sprache: Englisch
Publikationsjahr: 10 Mai 2005
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Synthetic metals
Jahrgang/Volume einer Zeitschrift: 150
(Heft-)Nummer: 3
URL / URN: http://www.sciencedirect.com/science/article/pii/S0379677905...
Kurzbeschreibung (Abstract):

A theoretical study of SCLC transport in double injection insulators is presented. It will be demonstrated, that the inclusion of charge carrier diffusion, neglected in many previous studies of transport in organic light emitting diodes (OLEDs), is essential to obtain physical meaningful spatial charge carrier densities and field distributions. Only the knowledge of such correct spatial distributions enables one to compute the correct position of the charge carrier recombination zone. In previous calculations without diffusion the recombination process often takes place in the vicinity of both electrodes, even for equal mobilities of holes and electrons. In the present calculation including diffusion it is demonstrated that only one recombination zone exists. For equal mobilities of electrons and holes the recombination zone is found as expected in the centre of the device whereas for different mobility values it may be strongly shifted to one of the electrodes. The resulting I–V characteristics indicate that, in double injection devices, the well-known Mott–Gurney law holds only at sufficiently high voltages and only if recombination is taken into account. For small voltages, an ohmic-like behavior is observed in any case, however, if no recombination is assumed a transition to an I ∼ V3 law is obtained for higher voltages. Due to the inclusion of diffusion, all I–V characteristics exhibit temperature dependence.

Freie Schlagworte: Organic light emitting diodes, Simulation, Diffusion, Space charge limited current
Zusätzliche Informationen:

SFB 595 Cooperation C5, D4

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektronische Materialeigenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C5: Phänomenologische Modellierung von Injektion, Transport und Rekombination in Bauelementen aus organischen Halbleitern sowie aus nichtorganischen Ferroelektrika
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften > Teilprojekt D4: Betriebsbedingte Ermüdung von Bauelementen aus organischen Halbleitern
Hinterlegungsdatum: 20 Nov 2008 08:22
Letzte Änderung: 20 Feb 2020 13:24
PPN:
Sponsoren: This work was supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 595.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen