TU Darmstadt / ULB / TUbiblio

Probability-constrained approach to estimation of random Gaussian parameters

Vorobyov, Sergiy ; Eldar, Yonina ; Nemirovski, Arkadi ; Gershman, Alex (2005)
Probability-constrained approach to estimation of random Gaussian parameters.
IEEE CAMSAP 2005 : the First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Puerto Vallarta, Mexico (13.12.2005-15.12.2005)
doi: 10.1109/CAMAP.2005.1574194
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The problem of estimating a random signal vector x observed through a linear transformation H and corrupted by an additive noise is considered. A linear estimator that minimizes the mean squared error (MSE) with a certain selected probability is derived under the assumption that both the additive noise and random signal vectors are zero mean Gaussian with known covariance matrices. Our approach can be viewed as a robust generalization of the Wiener filter. It simplifies to the recently proposed robust minimax estimator in some special cases.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Vorobyov, Sergiy ; Eldar, Yonina ; Nemirovski, Arkadi ; Gershman, Alex
Art des Eintrags: Bibliographie
Titel: Probability-constrained approach to estimation of random Gaussian parameters
Sprache: Englisch
Publikationsjahr: 2005
Ort: Piscataway, NJ
Verlag: IEEE
Buchtitel: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005
Veranstaltungstitel: IEEE CAMSAP 2005 : the First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Veranstaltungsort: Puerto Vallarta, Mexico
Veranstaltungsdatum: 13.12.2005-15.12.2005
DOI: 10.1109/CAMAP.2005.1574194
Kurzbeschreibung (Abstract):

The problem of estimating a random signal vector x observed through a linear transformation H and corrupted by an additive noise is considered. A linear estimator that minimizes the mean squared error (MSE) with a certain selected probability is derived under the assumption that both the additive noise and random signal vectors are zero mean Gaussian with known covariance matrices. Our approach can be viewed as a robust generalization of the Wiener filter. It simplifies to the recently proposed robust minimax estimator in some special cases.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 20 Nov 2008 08:21
Letzte Änderung: 10 Jan 2025 10:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen