TU Darmstadt / ULB / TUbiblio

Small substructures and decidability issues for two-variable first-order logic

Kieronski, E. ; Otto, Martin (2005)
Small substructures and decidability issues for two-variable first-order logic.
20th IEEE symposium on logic in computer science (LICS 05). Chicago, IL, USA (26.06.2005-29.06.2005)
doi: 10.1109/LICS.2005.49
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We study first-order logic with two variables FO/sup 2/ and establish a small substructure property. Similar to the small model property for FO/sup 2/ we obtain an exponential size bound on embedded substructures, relative to a fixed surrounding structure that may be infinite. We apply this technique to analyse the satisfiability problem for FO/sup 2/ under constraints that require several binary relations to be interpreted as equivalence relations. With a single equivalence relation, FO/sup 2/ has the finite model property and is complete for non-deterministic exponential time, just as for plain FO/sup 2/. With two equivalence relations, FO/sup 2/ does not have the finite model property, but is shown to be decidable via a construction of regular models that admit finite descriptions even though they may necessarily be infinite. For three or more equivalence relations, FO/sup 2/ is undecidable.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Kieronski, E. ; Otto, Martin
Art des Eintrags: Bibliographie
Titel: Small substructures and decidability issues for two-variable first-order logic
Sprache: Englisch
Publikationsjahr: 2005
Ort: Piscataway
Verlag: IEEE
Buchtitel: 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05)
Veranstaltungstitel: 20th IEEE symposium on logic in computer science (LICS 05)
Veranstaltungsort: Chicago, IL, USA
Veranstaltungsdatum: 26.06.2005-29.06.2005
DOI: 10.1109/LICS.2005.49
Kurzbeschreibung (Abstract):

We study first-order logic with two variables FO/sup 2/ and establish a small substructure property. Similar to the small model property for FO/sup 2/ we obtain an exponential size bound on embedded substructures, relative to a fixed surrounding structure that may be infinite. We apply this technique to analyse the satisfiability problem for FO/sup 2/ under constraints that require several binary relations to be interpreted as equivalence relations. With a single equivalence relation, FO/sup 2/ has the finite model property and is complete for non-deterministic exponential time, just as for plain FO/sup 2/. With two equivalence relations, FO/sup 2/ does not have the finite model property, but is shown to be decidable via a construction of regular models that admit finite descriptions even though they may necessarily be infinite. For three or more equivalence relations, FO/sup 2/ is undecidable.

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
Hinterlegungsdatum: 20 Nov 2008 08:21
Letzte Änderung: 20 Dez 2024 07:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen