TU Darmstadt / ULB / TUbiblio

Aquaporins in plants

Kaldenhoff, Ralf ; Fischer, M. (2006)
Aquaporins in plants.
In: Acta Physiologica Skandinavia, 187
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Although very often exposed to a rapid changing environment, plants are in general unable to evade from unfavourable conditions. Therefore, a fine tuned adaptation of physiology including the water balance appears to be of crucial importance. As a consequence a relatively large number of aquaporin genes are present in plant genomes. So far aquaporins in plants were shown to be involved in root water uptake, reproduction or photosynthesis. Accordingly, plant aquaporin classification as simple water pores has changed corresponding to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the respective physiological process could be achieved by regulation mechanisms, which range from post-translational modification, molecular trafficking to heteromerization of aquaporin isoforms. Here the function of the four plant aquaporin family subclasses with regard to substrate specificity, regulation and physiological relevance is described.

Typ des Eintrags: Artikel
Erschienen: 2006
Autor(en): Kaldenhoff, Ralf ; Fischer, M.
Art des Eintrags: Bibliographie
Titel: Aquaporins in plants
Sprache: Englisch
Publikationsjahr: 2006
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Physiologica Skandinavia
Jahrgang/Volume einer Zeitschrift: 187
Kurzbeschreibung (Abstract):

Although very often exposed to a rapid changing environment, plants are in general unable to evade from unfavourable conditions. Therefore, a fine tuned adaptation of physiology including the water balance appears to be of crucial importance. As a consequence a relatively large number of aquaporin genes are present in plant genomes. So far aquaporins in plants were shown to be involved in root water uptake, reproduction or photosynthesis. Accordingly, plant aquaporin classification as simple water pores has changed corresponding to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the respective physiological process could be achieved by regulation mechanisms, which range from post-translational modification, molecular trafficking to heteromerization of aquaporin isoforms. Here the function of the four plant aquaporin family subclasses with regard to substrate specificity, regulation and physiological relevance is described.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
?? fb10_botanik ??
10 Fachbereich Biologie > Applied Plant Sciences
Hinterlegungsdatum: 20 Nov 2008 08:21
Letzte Änderung: 20 Feb 2020 13:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen