TU Darmstadt / ULB / TUbiblio

Sol-gel modelling associated with the rheology of polymeric precursors of ceramic materials

Balan, C. ; Riedel, Ralf (2003):
Sol-gel modelling associated with the rheology of polymeric precursors of ceramic materials.
In: Applied Rheology, 13, pp. 251-258. ISSN 1617-8106,
[Article]

Abstract

A general constitutive relation describing the change of viscoelastic behavior during the liquid - solid (sol - gel) transition which takes place in preceramic polymers is derived on the basis of Jeffrey.s 3-constants model with time dependent viscosities and elasticity. It is postulated that the sol - gel - transition can be analyzed analogous to the solutions of the Avrami equation used for modeling crystallization processes. Two different polymer systems used as precursor for the production of ceramic materials are investigated here: i) a mixture based on polysiloxane, alumatrane and isopropanol; ii) a non-oxidic carbodiimide gel based on the reaction of chlorosilanes with bis(trimethylsilyl)carbodiimide. Continuous measurements of the dynamic moduli versus reaction time, as well as creep tests at constant shear stress, evidenced both qualitative similarities and quantitative differences associated with the sol - gel transition of the two polymer systems. The shear rate and viscosity dependence of reaction time in creep tests, respectively the evolution of Lissajous figures associated with oscillatory experiments, are found to be consistent with the numerical simulations of the proposed constitutive relation.

Item Type: Article
Erschienen: 2003
Creators: Balan, C. ; Riedel, Ralf
Title: Sol-gel modelling associated with the rheology of polymeric precursors of ceramic materials
Language: English
Abstract:

A general constitutive relation describing the change of viscoelastic behavior during the liquid - solid (sol - gel) transition which takes place in preceramic polymers is derived on the basis of Jeffrey.s 3-constants model with time dependent viscosities and elasticity. It is postulated that the sol - gel - transition can be analyzed analogous to the solutions of the Avrami equation used for modeling crystallization processes. Two different polymer systems used as precursor for the production of ceramic materials are investigated here: i) a mixture based on polysiloxane, alumatrane and isopropanol; ii) a non-oxidic carbodiimide gel based on the reaction of chlorosilanes with bis(trimethylsilyl)carbodiimide. Continuous measurements of the dynamic moduli versus reaction time, as well as creep tests at constant shear stress, evidenced both qualitative similarities and quantitative differences associated with the sol - gel transition of the two polymer systems. The shear rate and viscosity dependence of reaction time in creep tests, respectively the evolution of Lissajous figures associated with oscillatory experiments, are found to be consistent with the numerical simulations of the proposed constitutive relation.

Journal or Publication Title: Applied Rheology
Journal volume: 13
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids
Date Deposited: 20 Nov 2008 08:16
License: [undefiniert]
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details