Fischer, Martin ; Schmidt, Martin ; Kavsek-Biasizzo, Katarina (1997)
Nonlinear predictive control based on the extraction of step-response models from Takagi-Sugeno fuzzy systems.
American Control Conference (ACC) 1997. Albuquerque, USA (06.06.1997-06.06.1997)
doi: 10.1109/ACC.1997.611983
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper deals with nonlinear predictive control based on higher order Takagi-Sugeno fuzzy systems which can also be interpreted as generalized radial basis function networks. We investigate how the fuzzy models can be linked to a special type of model based predictive control algorithm, namely the dynamic matrix control (DMC). Previously, purely linear step response models were used for long-range prediction. Here, the method is extended to nonlinear processes. Therefore, various step responses for different operating points are extracted from the fuzzy model. For performance evaluation, a heat exchanger is identified by means of the local linear model tree algorithm and controlled by the modified DMC.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 1997 |
Autor(en): | Fischer, Martin ; Schmidt, Martin ; Kavsek-Biasizzo, Katarina |
Art des Eintrags: | Bibliographie |
Titel: | Nonlinear predictive control based on the extraction of step-response models from Takagi-Sugeno fuzzy systems |
Sprache: | Englisch |
Publikationsjahr: | 1997 |
Verlag: | IEEE |
Buchtitel: | Proceedings of the 1997 American Control Conference |
Veranstaltungstitel: | American Control Conference (ACC) 1997 |
Veranstaltungsort: | Albuquerque, USA |
Veranstaltungsdatum: | 06.06.1997-06.06.1997 |
DOI: | 10.1109/ACC.1997.611983 |
Kurzbeschreibung (Abstract): | This paper deals with nonlinear predictive control based on higher order Takagi-Sugeno fuzzy systems which can also be interpreted as generalized radial basis function networks. We investigate how the fuzzy models can be linked to a special type of model based predictive control algorithm, namely the dynamic matrix control (DMC). Previously, purely linear step response models were used for long-range prediction. Here, the method is extended to nonlinear processes. Therefore, various step responses for different operating points are extracted from the fuzzy model. For performance evaluation, a heat exchanger is identified by means of the local linear model tree algorithm and controlled by the modified DMC. |
Zusätzliche Informationen: | Vol. 5 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik |
Hinterlegungsdatum: | 19 Nov 2008 16:27 |
Letzte Änderung: | 01 Jun 2023 12:34 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |