TU Darmstadt / ULB / TUbiblio

A new homogenization scheme for beam and plate structures without a priori requirements on boundary conditions

Müller, Maximilian ; Klarmann, Simon ; Gruttmann, Friedrich (2022)
A new homogenization scheme for beam and plate structures without a priori requirements on boundary conditions.
In: Computational Mechanics : Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing, 70 (6)
doi: 10.1007/s00466-022-02219-1
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This contribution picks up on a novel approach for a first order homogenization procedure based on the Irving-Kirkwood theory and provides a finite element implementation as well as applications to beam and plate structures. It does not have the fundamental problems of dependency from representative volume element (RVE) size in determining the shear and torsional stiffness for beams and plates, that is present in classic Hill-Mandel methods. Due to the possibility of using minimal boundary conditions whilst simultaneously reusing existing homogenization algorithms, creation of models and numerical implementation are much more straight forward. The presented theory and FE formulation are limited to materially and geometrically linear problems. The approach to determining shear stiffness is based on the assumption of a quadratic shear stress distribution over the height (and width in case of the beam), which causes warping of the cross-section under transverse shear loading. Results for the homogenization scheme are shown for various beam and plate configurations and compared to values from well known analytical solutions or computed full scale models.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Müller, Maximilian ; Klarmann, Simon ; Gruttmann, Friedrich
Art des Eintrags: Bibliographie
Titel: A new homogenization scheme for beam and plate structures without a priori requirements on boundary conditions
Sprache: Englisch
Publikationsjahr: Dezember 2022
Ort: Berlin ; Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Mechanics : Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing
Jahrgang/Volume einer Zeitschrift: 70
(Heft-)Nummer: 6
DOI: 10.1007/s00466-022-02219-1
Zugehörige Links:
Kurzbeschreibung (Abstract):

This contribution picks up on a novel approach for a first order homogenization procedure based on the Irving-Kirkwood theory and provides a finite element implementation as well as applications to beam and plate structures. It does not have the fundamental problems of dependency from representative volume element (RVE) size in determining the shear and torsional stiffness for beams and plates, that is present in classic Hill-Mandel methods. Due to the possibility of using minimal boundary conditions whilst simultaneously reusing existing homogenization algorithms, creation of models and numerical implementation are much more straight forward. The presented theory and FE formulation are limited to materially and geometrically linear problems. The approach to determining shear stiffness is based on the assumption of a quadratic shear stress distribution over the height (and width in case of the beam), which causes warping of the cross-section under transverse shear loading. Results for the homogenization scheme are shown for various beam and plate configurations and compared to values from well known analytical solutions or computed full scale models.

Freie Schlagworte: Multiscale simulation of beam and plate systems, FE2, Boundary conditions on the RVE, Irving-Kirkwood theory, Standard nodal degrees of freedom
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Festkörpermechanik
Hinterlegungsdatum: 20 Jan 2025 10:25
Letzte Änderung: 20 Jan 2025 10:30
PPN: 525422153
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen