Gangwar, Tarun ; Schillinger, Dominik (2023)
Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems.
In: Structural and Multidisciplinary Optimization, 66 (9)
doi: 10.1007/s00158-023-03648-z
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
The concept of concurrent material and structure optimization aims at alleviating the computational discovery of optimum microstructure configurations in multiphase hierarchical systems, whose macroscale behavior is governed by their microstructure composition that can evolve over multiple length scales from a few micrometers to centimeters. It is based on the split of the multiscale optimization problem into two nested sub-problems, one at the macroscale (structure) and the other at the microscales (material). In this paper, we establish a novel formulation of concurrent material and structure optimization for multiphase hierarchical systems with elastoplastic constituents at the material scales. Exploiting the thermomechanical foundations of elastoplasticity, we reformulate the material optimization problem based on the maximum plastic dissipation principle such that it assumes the format of an elastoplastic constitutive law and can be efficiently solved via modified return mapping algorithms. We integrate continuum micromechanics based estimates of the stiffness and the yield criterion into the formulation, which opens the door to a computationally feasible treatment of the material optimization problem. To demonstrate the accuracy and robustness of our framework, we define new benchmark tests with several material scales that, for the first time, become computationally feasible. We argue that our formulation naturally extends to multiscale optimization under further path-dependent effects such as viscoplasticity or multiscale fracture and damage.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Gangwar, Tarun ; Schillinger, Dominik |
Art des Eintrags: | Bibliographie |
Titel: | Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems |
Sprache: | Englisch |
Publikationsjahr: | September 2023 |
Ort: | Berlin ; Heidelberg ; New York |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Structural and Multidisciplinary Optimization |
Jahrgang/Volume einer Zeitschrift: | 66 |
(Heft-)Nummer: | 9 |
Kollation: | 31 Seiten |
DOI: | 10.1007/s00158-023-03648-z |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The concept of concurrent material and structure optimization aims at alleviating the computational discovery of optimum microstructure configurations in multiphase hierarchical systems, whose macroscale behavior is governed by their microstructure composition that can evolve over multiple length scales from a few micrometers to centimeters. It is based on the split of the multiscale optimization problem into two nested sub-problems, one at the macroscale (structure) and the other at the microscales (material). In this paper, we establish a novel formulation of concurrent material and structure optimization for multiphase hierarchical systems with elastoplastic constituents at the material scales. Exploiting the thermomechanical foundations of elastoplasticity, we reformulate the material optimization problem based on the maximum plastic dissipation principle such that it assumes the format of an elastoplastic constitutive law and can be efficiently solved via modified return mapping algorithms. We integrate continuum micromechanics based estimates of the stiffness and the yield criterion into the formulation, which opens the door to a computationally feasible treatment of the material optimization problem. To demonstrate the accuracy and robustness of our framework, we define new benchmark tests with several material scales that, for the first time, become computationally feasible. We argue that our formulation naturally extends to multiscale optimization under further path-dependent effects such as viscoplasticity or multiscale fracture and damage. |
Freie Schlagworte: | Multiphase topology optimization, Concurrent design, Continuum micromechanics, Homogenization, Elastoplasticity, Path-dependent optimization |
ID-Nummer: | Artikel-ID: 195 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Numerische Mechanik |
Hinterlegungsdatum: | 20 Jan 2025 09:22 |
Letzte Änderung: | 20 Jan 2025 09:54 |
PPN: | 525418288 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems. (deposited 16 Jan 2025 13:42)
- Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems. (deposited 20 Jan 2025 09:22) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |