TU Darmstadt / ULB / TUbiblio

Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems

Gangwar, Tarun ; Schillinger, Dominik (2025)
Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems.
In: Structural and Multidisciplinary Optimization, 2023, 66 (9)
doi: 10.26083/tuprints-00028349
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The concept of concurrent material and structure optimization aims at alleviating the computational discovery of optimum microstructure configurations in multiphase hierarchical systems, whose macroscale behavior is governed by their microstructure composition that can evolve over multiple length scales from a few micrometers to centimeters. It is based on the split of the multiscale optimization problem into two nested sub-problems, one at the macroscale (structure) and the other at the microscales (material). In this paper, we establish a novel formulation of concurrent material and structure optimization for multiphase hierarchical systems with elastoplastic constituents at the material scales. Exploiting the thermomechanical foundations of elastoplasticity, we reformulate the material optimization problem based on the maximum plastic dissipation principle such that it assumes the format of an elastoplastic constitutive law and can be efficiently solved via modified return mapping algorithms. We integrate continuum micromechanics based estimates of the stiffness and the yield criterion into the formulation, which opens the door to a computationally feasible treatment of the material optimization problem. To demonstrate the accuracy and robustness of our framework, we define new benchmark tests with several material scales that, for the first time, become computationally feasible. We argue that our formulation naturally extends to multiscale optimization under further path-dependent effects such as viscoplasticity or multiscale fracture and damage.

Typ des Eintrags: Artikel
Erschienen: 2025
Autor(en): Gangwar, Tarun ; Schillinger, Dominik
Art des Eintrags: Zweitveröffentlichung
Titel: Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems
Sprache: Englisch
Publikationsjahr: 16 Januar 2025
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2023
Ort der Erstveröffentlichung: Berlin ; Heidelberg ; New York
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Structural and Multidisciplinary Optimization
Jahrgang/Volume einer Zeitschrift: 66
(Heft-)Nummer: 9
Kollation: 31 Seiten
DOI: 10.26083/tuprints-00028349
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28349
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The concept of concurrent material and structure optimization aims at alleviating the computational discovery of optimum microstructure configurations in multiphase hierarchical systems, whose macroscale behavior is governed by their microstructure composition that can evolve over multiple length scales from a few micrometers to centimeters. It is based on the split of the multiscale optimization problem into two nested sub-problems, one at the macroscale (structure) and the other at the microscales (material). In this paper, we establish a novel formulation of concurrent material and structure optimization for multiphase hierarchical systems with elastoplastic constituents at the material scales. Exploiting the thermomechanical foundations of elastoplasticity, we reformulate the material optimization problem based on the maximum plastic dissipation principle such that it assumes the format of an elastoplastic constitutive law and can be efficiently solved via modified return mapping algorithms. We integrate continuum micromechanics based estimates of the stiffness and the yield criterion into the formulation, which opens the door to a computationally feasible treatment of the material optimization problem. To demonstrate the accuracy and robustness of our framework, we define new benchmark tests with several material scales that, for the first time, become computationally feasible. We argue that our formulation naturally extends to multiscale optimization under further path-dependent effects such as viscoplasticity or multiscale fracture and damage.

Freie Schlagworte: Multiphase topology optimization, Concurrent design, Continuum micromechanics, Homogenization, Elastoplasticity, Path-dependent optimization
ID-Nummer: Artikel-ID: 195
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-283498
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Numerische Mechanik
Hinterlegungsdatum: 16 Jan 2025 13:42
Letzte Änderung: 20 Jan 2025 09:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen