TU Darmstadt / ULB / TUbiblio

Oxidation behavior of amorphous and nanocrystalline SiBCN ceramics – Kinetic consideration and microstructure

Niu, Zibo ; Li, Daxin ; Jia, Dechang ; Yang, Zhihua ; Lin, Kunpeng ; Riedel, Ralf ; Colombo, Paolo ; Zhou, Yu (2024)
Oxidation behavior of amorphous and nanocrystalline SiBCN ceramics – Kinetic consideration and microstructure.
In: Advanced Powder Materials, 3 (1)
doi: 10.1016/j.apmate.2023.100163
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were analyzed. The amorphous structure has exceptionally high oxidation activity but presents much better oxidation resistance due to its synchronous oxidation of atomic units and homogeneous composition in the generated oxide layer. However, the oxidation resistance of SiBCN ceramic will degrade during the continual crystallization process, especially for the formation of the nanocapsule-like structure, due to heterogeneous oxidation caused by the phase separation. Besides, the activation energy and rate-controlling mechanism of the atomic units and phases in SiBCN ceramics were obtained. The BNCx (Ea =145 kJ/mol) and SiC(2-x) (Ea= 364 kJ/mol) atomic units in amorphous SiBCN structure can be oxidized at relatively lower temperatures with much lower activation energy than the corresponding BN(C) (Ea = 209 kJ/mol) and SiC (Ea = 533 kJ/mol) phases in crystalline structure, and the synchronous oxidation of the SiC(2-x) and BNCx units above 750 degrees C changes the oxidation activation energy of BNCx (Ea = 332 kJ/mol) to that similar to SiC(2-x). The heterogeneous oxide layer formed from the nanocapsule-like structure will decrease the activation energy SiC (Ea = 445 kJ/mol) and t-BN (Ea= 198 kJ/mol).

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Niu, Zibo ; Li, Daxin ; Jia, Dechang ; Yang, Zhihua ; Lin, Kunpeng ; Riedel, Ralf ; Colombo, Paolo ; Zhou, Yu
Art des Eintrags: Bibliographie
Titel: Oxidation behavior of amorphous and nanocrystalline SiBCN ceramics – Kinetic consideration and microstructure
Sprache: Englisch
Publikationsjahr: Februar 2024
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Powder Materials
Jahrgang/Volume einer Zeitschrift: 3
(Heft-)Nummer: 1
DOI: 10.1016/j.apmate.2023.100163
Kurzbeschreibung (Abstract):

In this study, the structural evolution of SiBCN ceramics during crystallization and its effects on oxidation behavior involving different atomic units or formed phases in amorphous or crystalline SiBCN ceramics were analyzed. The amorphous structure has exceptionally high oxidation activity but presents much better oxidation resistance due to its synchronous oxidation of atomic units and homogeneous composition in the generated oxide layer. However, the oxidation resistance of SiBCN ceramic will degrade during the continual crystallization process, especially for the formation of the nanocapsule-like structure, due to heterogeneous oxidation caused by the phase separation. Besides, the activation energy and rate-controlling mechanism of the atomic units and phases in SiBCN ceramics were obtained. The BNCx (Ea =145 kJ/mol) and SiC(2-x) (Ea= 364 kJ/mol) atomic units in amorphous SiBCN structure can be oxidized at relatively lower temperatures with much lower activation energy than the corresponding BN(C) (Ea = 209 kJ/mol) and SiC (Ea = 533 kJ/mol) phases in crystalline structure, and the synchronous oxidation of the SiC(2-x) and BNCx units above 750 degrees C changes the oxidation activation energy of BNCx (Ea = 332 kJ/mol) to that similar to SiC(2-x). The heterogeneous oxide layer formed from the nanocapsule-like structure will decrease the activation energy SiC (Ea = 445 kJ/mol) and t-BN (Ea= 198 kJ/mol).

Freie Schlagworte: SiBCN ceramics, Amorphous, Crystallization, Oxidation, Kinetics analysis
ID-Nummer: Artikel-ID: 100163
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 17 Jan 2025 09:28
Letzte Änderung: 17 Jan 2025 09:28
PPN: 525394745
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen