TU Darmstadt / ULB / TUbiblio

Single-source-precursor synthesis of dense monolithic SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C ceramic nanocomposite with excellent high-temperature oxidation resistance

Lu, Li ; Wen, Tonghui ; Li, Wei ; Wen, Qingbo ; Yu, Zhaoju ; Tao, Shasha ; Yang, Jincan ; Wang, Yalei ; Luan, Xingang ; Xiong, Xiang ; Riedel, Ralf (2024)
Single-source-precursor synthesis of dense monolithic SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C ceramic nanocomposite with excellent high-temperature oxidation resistance.
In: Journal of the European Ceramic Society, 44 (2)
doi: 10.1016/j.jeurceramsoc.2023.09.074
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A dense monolithic SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C ceramic nanocomposite containing high-entropy carbide phase was prepared using a single-source-precursor method combined with spark plasma sintering. The nanocomposites were characterized by a unique microstructure with a homogeneous dispersion of (Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C @C core-shell nanoparticles within a beta-SiC matrix. The atomic ratios of transition metal elements within the in situ generated (Ti0.25Zr0.25Hf0.25Ta0.25)C nanoparticles can be controlled precisely by molecular design of the preceramic precursors. Oxidation behavior of the SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C nanocomposite was investigated as well. The SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C exhibit excellent oxidation resistance between 1200 degrees C and 1500 degrees C due to the in situ generated continuous multiphase scales consisting of beta-SiO₂, HfTiO₄, ZrSiO₄, HfSiO₄, and Ta₂O₅ that can be rapidly sintered during oxidation. Particularly, at 1200 degrees C, the parabolic oxidation rate constant (Kp) value is 1-2 orders of magnitude lower than that of similar SiC/HfC, SiC/ (Hf, Ta)C, SiC/(Hf, Ti)C and SiC/(Hf, Zr, Ti)C nanocomposites.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lu, Li ; Wen, Tonghui ; Li, Wei ; Wen, Qingbo ; Yu, Zhaoju ; Tao, Shasha ; Yang, Jincan ; Wang, Yalei ; Luan, Xingang ; Xiong, Xiang ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Single-source-precursor synthesis of dense monolithic SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C ceramic nanocomposite with excellent high-temperature oxidation resistance
Sprache: Englisch
Publikationsjahr: Februar 2024
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the European Ceramic Society
Jahrgang/Volume einer Zeitschrift: 44
(Heft-)Nummer: 2
DOI: 10.1016/j.jeurceramsoc.2023.09.074
Kurzbeschreibung (Abstract):

A dense monolithic SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C ceramic nanocomposite containing high-entropy carbide phase was prepared using a single-source-precursor method combined with spark plasma sintering. The nanocomposites were characterized by a unique microstructure with a homogeneous dispersion of (Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C @C core-shell nanoparticles within a beta-SiC matrix. The atomic ratios of transition metal elements within the in situ generated (Ti0.25Zr0.25Hf0.25Ta0.25)C nanoparticles can be controlled precisely by molecular design of the preceramic precursors. Oxidation behavior of the SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C nanocomposite was investigated as well. The SiC/(Ti₀.₂₅Zr₀.₂₅Hf₀.₂₅Ta₀.₂₅)C exhibit excellent oxidation resistance between 1200 degrees C and 1500 degrees C due to the in situ generated continuous multiphase scales consisting of beta-SiO₂, HfTiO₄, ZrSiO₄, HfSiO₄, and Ta₂O₅ that can be rapidly sintered during oxidation. Particularly, at 1200 degrees C, the parabolic oxidation rate constant (Kp) value is 1-2 orders of magnitude lower than that of similar SiC/HfC, SiC/ (Hf, Ta)C, SiC/(Hf, Ti)C and SiC/(Hf, Zr, Ti)C nanocomposites.

Freie Schlagworte: Polymer-derived ceramics (PDC), High entropy ceramics, Oxidation, Thermal protection, Harsh environment
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 17 Jan 2025 09:21
Letzte Änderung: 17 Jan 2025 09:21
PPN: 52539446X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen