TU Darmstadt / ULB / TUbiblio

Finite element simulation of permeable fault influence on a medium deep borehole thermal energy storage system

Seib, Lukas ; Welsch, Bastian ; Bossennec, Claire ; Frey, Matthis ; Sass, Ingo (2025)
Finite element simulation of permeable fault influence on a medium deep borehole thermal energy storage system.
In: Geothermal Energy : Science – Society – Technology, 2022, 10 (1)
doi: 10.26083/tuprints-00028751
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Solutions for seasonal energy storage systems are essential for the reliable use of fluctuating renewable energy sources. As part of the research project SKEWS, a medium deep borehole thermal energy storage system with a depth of 750 m is under construction at Campus Lichtwiese in Darmstadt, Germany, to demonstrate this innovative technology. Prior to the design of SKEWS, the geological context in the surroundings of the project location was investigated using archive drilling data and groundwater measurements. The geologic survey suggests the assumption that the uppermost part of the intended storage domain is crosscut by a normal fault, which displaces the Permian rocks east of Darmstadt against granodioritic rocks of the Odenwald crystalline complex. A 3D finite-element numerical model was implemented to estimate the effect of the potentially higher hydraulic conductivity of the fault zone on the planned storage system. For this purpose, a storage operation over a time span of 30 years was simulated for different parametrizations of the fault zone. The simulations reveal a limited but visible heat removal from the storage region with increasing groundwater flow in the fault zone. However, the section of the borehole thermal energy storage system affected by the fault is minor compared to the total depth of the system. This only constitutes a minor impairment of the storage efficiency of approximately 3%. In total, the amount of heat extracted varies between 320.2 GWh and 326.2 GWh for the different models. These findings can be helpful for the planning and assessment of future medium deep borehole thermal energy storage systems in fractured and faulted crystalline settings by providing data about the potential impact of faults or large fractures crosscutting the storage system.

Typ des Eintrags: Artikel
Erschienen: 2025
Autor(en): Seib, Lukas ; Welsch, Bastian ; Bossennec, Claire ; Frey, Matthis ; Sass, Ingo
Art des Eintrags: Zweitveröffentlichung
Titel: Finite element simulation of permeable fault influence on a medium deep borehole thermal energy storage system
Sprache: Englisch
Publikationsjahr: 14 Januar 2025
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 7 September 2022
Ort der Erstveröffentlichung: Berlin ; Heidelberg
Verlag: SpringerOpen
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Geothermal Energy : Science – Society – Technology
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 1
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00028751
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28751
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Solutions for seasonal energy storage systems are essential for the reliable use of fluctuating renewable energy sources. As part of the research project SKEWS, a medium deep borehole thermal energy storage system with a depth of 750 m is under construction at Campus Lichtwiese in Darmstadt, Germany, to demonstrate this innovative technology. Prior to the design of SKEWS, the geological context in the surroundings of the project location was investigated using archive drilling data and groundwater measurements. The geologic survey suggests the assumption that the uppermost part of the intended storage domain is crosscut by a normal fault, which displaces the Permian rocks east of Darmstadt against granodioritic rocks of the Odenwald crystalline complex. A 3D finite-element numerical model was implemented to estimate the effect of the potentially higher hydraulic conductivity of the fault zone on the planned storage system. For this purpose, a storage operation over a time span of 30 years was simulated for different parametrizations of the fault zone. The simulations reveal a limited but visible heat removal from the storage region with increasing groundwater flow in the fault zone. However, the section of the borehole thermal energy storage system affected by the fault is minor compared to the total depth of the system. This only constitutes a minor impairment of the storage efficiency of approximately 3%. In total, the amount of heat extracted varies between 320.2 GWh and 326.2 GWh for the different models. These findings can be helpful for the planning and assessment of future medium deep borehole thermal energy storage systems in fractured and faulted crystalline settings by providing data about the potential impact of faults or large fractures crosscutting the storage system.

Freie Schlagworte: Medium deep-BTES, Fault permeability, Basement rock, FE-model
ID-Nummer: Artikel-ID: 15
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-287514
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Angewandte Geothermie
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Energy Science and Engineering (ESE)
Hinterlegungsdatum: 14 Jan 2025 09:37
Letzte Änderung: 15 Jan 2025 06:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen