TU Darmstadt / ULB / TUbiblio

Overhead-Guided Instrumentation Refinement

Kreutzer, Sebastian ; Arzt, Peter ; Rickert, Jonas ; Lehr, Jan-Patrick ; Iwainsky, Christian ; Bischof, Christian (2024)
Overhead-Guided Instrumentation Refinement.
2024 International Conference for High Performance Computing, Networking, Storage and Analysis. Atlanta, USA (17.11.2024-22.11.2024)
doi: 10.1109/SCW63240.2024.00198
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Instrumentation is a widely used technique for gathering performance data. However, excessive instrumentation can lead to significant runtime overheads, potentially skewing performance analysis results. In this work, we propose a novel approach to automatically generate and refine instrumentation configurations (ICs) to maximize measurement coverage while adhering to a user-defined overhead budget. Our approach formulates the problem of selecting instrumented functions as a binary knapsack problem, integrating dynamic profile data and static call-graph information to estimate costs. We implement this approach within the PIRA profiling infrastructure and demonstrate its effectiveness with the LULESH, AMG2013, MILC and ASTAR proxy applications, achieving relevant hot spot coverage while staying within the specified overhead limit.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Kreutzer, Sebastian ; Arzt, Peter ; Rickert, Jonas ; Lehr, Jan-Patrick ; Iwainsky, Christian ; Bischof, Christian
Art des Eintrags: Bibliographie
Titel: Overhead-Guided Instrumentation Refinement
Sprache: Englisch
Publikationsjahr: 2024
Verlag: IEEE
Buchtitel: Proceedings of the Workshops of the SC'24 International Conference for High Performance Computing, Networking, Storage and Analysis
Veranstaltungstitel: 2024 International Conference for High Performance Computing, Networking, Storage and Analysis
Veranstaltungsort: Atlanta, USA
Veranstaltungsdatum: 17.11.2024-22.11.2024
DOI: 10.1109/SCW63240.2024.00198
Kurzbeschreibung (Abstract):

Instrumentation is a widely used technique for gathering performance data. However, excessive instrumentation can lead to significant runtime overheads, potentially skewing performance analysis results. In this work, we propose a novel approach to automatically generate and refine instrumentation configurations (ICs) to maximize measurement coverage while adhering to a user-defined overhead budget. Our approach formulates the problem of selecting instrumented functions as a binary knapsack problem, integrating dynamic profile data and static call-graph information to estimate costs. We implement this approach within the PIRA profiling infrastructure and demonstrate its effectiveness with the LULESH, AMG2013, MILC and ASTAR proxy applications, achieving relevant hot spot coverage while staying within the specified overhead limit.

Freie Schlagworte: High-performance computing, Instrumentation, Performance profiling
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Scientific Computing
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 15 Jan 2025 13:44
Letzte Änderung: 15 Jan 2025 13:44
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen