Gehrer, Roman ; Dumss, Stefan ; Gast, Fabian ; Wünschel, Willi ; Schwill, Frederic ; Šoša, Mateo ; Zhou, Shiyang ; Ristow, Gerald H. ; Gharagyozyan, Tatevik ; Heistracher, Clemens ; Grafinger, Manfred ; Weigold, Matthias (2024)
EuProGigant: a decentralized federated learning approach based on Compute-to-Data and Gaia-X.
In: Procedia CIRP, 128
doi: 10.1016/j.procir.2024.07.060
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Machine learning normally requires a considerable amount of data for model training, limiting the field of usage especially for small manufacturing companies due to their lack of machine data. Federated learning provides an opportunity to enlarge the data basis for model training without the need to directly share the machine data with other participants, addressing concerns regarding to privacy, intellectual property and potential reverse engineering of proprietary process information through competitors. Previous research focused mainly on federated learning models, mostly managed and orchestrated by some kind of centralized authority. The presented approach shows a more decentralized, self-sovereign concept of federated learning for the manufacturing industry, expanding its applicability to a broader range of participants. It combines existing solutions for machine learning and Compute-to-Data by Ocean Protocol with the concept of dataspaces as defined by Gaia-X. The methodology is demonstrated through an use case derived from industry demands involving several CNC milling machines.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Gehrer, Roman ; Dumss, Stefan ; Gast, Fabian ; Wünschel, Willi ; Schwill, Frederic ; Šoša, Mateo ; Zhou, Shiyang ; Ristow, Gerald H. ; Gharagyozyan, Tatevik ; Heistracher, Clemens ; Grafinger, Manfred ; Weigold, Matthias |
Art des Eintrags: | Bibliographie |
Titel: | EuProGigant: a decentralized federated learning approach based on Compute-to-Data and Gaia-X |
Sprache: | Englisch |
Publikationsjahr: | 2024 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Procedia CIRP |
Jahrgang/Volume einer Zeitschrift: | 128 |
DOI: | 10.1016/j.procir.2024.07.060 |
Kurzbeschreibung (Abstract): | Machine learning normally requires a considerable amount of data for model training, limiting the field of usage especially for small manufacturing companies due to their lack of machine data. Federated learning provides an opportunity to enlarge the data basis for model training without the need to directly share the machine data with other participants, addressing concerns regarding to privacy, intellectual property and potential reverse engineering of proprietary process information through competitors. Previous research focused mainly on federated learning models, mostly managed and orchestrated by some kind of centralized authority. The presented approach shows a more decentralized, self-sovereign concept of federated learning for the manufacturing industry, expanding its applicability to a broader range of participants. It combines existing solutions for machine learning and Compute-to-Data by Ocean Protocol with the concept of dataspaces as defined by Gaia-X. The methodology is demonstrated through an use case derived from industry demands involving several CNC milling machines. |
Freie Schlagworte: | design methodology, federated learning, Gaia-X, technologies, tools |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > TEC Fertigungstechnologie |
Hinterlegungsdatum: | 30 Dez 2024 08:00 |
Letzte Änderung: | 30 Dez 2024 10:07 |
PPN: | 524975264 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |