Ebrahem, Adnan (2024)
A Multiscale-Multiphysics Framework for Modeling Organ-scale Liver Regrowth.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00028915
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
The human liver is capable of regenerating after partial surgical resection. While driven by rapid cell division at the microscale, tissue growth associated with liver regeneration significantly affects the liver's meso- and macroscale perfusion capability, which liver functionality critically depends on. In this thesis, a computational framework is presented that integrates three models associated with physics at multiple spatial scales to simulate the effect of liver tissue regrowth on the perfusion capability of a full-scale liver. This includes (1) a discrete vascular tree approach representing blood supply and drainage at the organ scale, (2) a multi-compartment homogenized flow model representing perfusion at the lower levels of the hierarchical tree network and the liver lobules, and (3) an isotropic growth model of a poroelastic medium representing hyperplasia of liver lobules. Appropriate coupling mechanisms are provided and discussed to ensure physiological interaction between these components. Additionally, an empirical driving force is motivated, initiating compensatory growth of liver tissue until a physiological blood flow rate is achieved at each point of the liver domain. This driving force is calibrated based on available liver data. Using a patient-specific liver geometry, it is demonstrated that the multiscale-multiphysics model correctly predicts the typical perfusion outcome associated with common surgical cut patterns.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2024 | ||||
Autor(en): | Ebrahem, Adnan | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | A Multiscale-Multiphysics Framework for Modeling Organ-scale Liver Regrowth | ||||
Sprache: | Englisch | ||||
Referenten: | Schillinger, Prof. Dr. Dominik ; Budday, Prof. Dr. Silvia | ||||
Publikationsjahr: | 19 Dezember 2024 | ||||
Ort: | Darmstadt | ||||
Kollation: | 117 Seiten | ||||
Datum der mündlichen Prüfung: | 11 Dezember 2024 | ||||
DOI: | 10.26083/tuprints-00028915 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/28915 | ||||
Kurzbeschreibung (Abstract): | The human liver is capable of regenerating after partial surgical resection. While driven by rapid cell division at the microscale, tissue growth associated with liver regeneration significantly affects the liver's meso- and macroscale perfusion capability, which liver functionality critically depends on. In this thesis, a computational framework is presented that integrates three models associated with physics at multiple spatial scales to simulate the effect of liver tissue regrowth on the perfusion capability of a full-scale liver. This includes (1) a discrete vascular tree approach representing blood supply and drainage at the organ scale, (2) a multi-compartment homogenized flow model representing perfusion at the lower levels of the hierarchical tree network and the liver lobules, and (3) an isotropic growth model of a poroelastic medium representing hyperplasia of liver lobules. Appropriate coupling mechanisms are provided and discussed to ensure physiological interaction between these components. Additionally, an empirical driving force is motivated, initiating compensatory growth of liver tissue until a physiological blood flow rate is achieved at each point of the liver domain. This driving force is calibrated based on available liver data. Using a patient-specific liver geometry, it is demonstrated that the multiscale-multiphysics model correctly predicts the typical perfusion outcome associated with common surgical cut patterns. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-289153 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Numerische Mechanik |
||||
Hinterlegungsdatum: | 19 Dez 2024 14:19 | ||||
Letzte Änderung: | 20 Dez 2024 06:16 | ||||
PPN: | |||||
Referenten: | Schillinger, Prof. Dr. Dominik ; Budday, Prof. Dr. Silvia | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 11 Dezember 2024 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |