TU Darmstadt / ULB / TUbiblio

Asynchronous parametric excitation: validation of theoretical results by electronic circuit simulation

Karev, Artem ; Hagedorn, Peter (2024)
Asynchronous parametric excitation: validation of theoretical results by electronic circuit simulation.
In: Nonlinear Dynamics : An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 2020, 102 (1)
doi: 10.26083/tuprints-00023894
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A validation of recent theoretical results on the stability effects of asynchronous parametric excitation is presented. In particular, the coexistence of both resonance and anti-resonance at each combination resonance frequency is to be confirmed on a close-to-experiment simulation model. The simulation model reproduces the experimental setup developed by Schmieg in 1976, remaining the only experimental study on asynchronous excitation to this day. The model consists of two oscillating electronic circuits with feedback-free coupling through parametric excitation. In contrast to a mechanical system, the phase relations of the parametric excitation terms in an electronic system can be easily adjusted. The implementation of the simulation model is performed in the electronic circuit simulation software LTspice. The electronic model itself is first validated against the experimental results obtained by Schmieg and is then used to confirm the theoretical findings. The results of the electronic circuit simulation show excellent qualitative and quantitative agreement with analytical approximations confirming the coexistence of resonance and anti-resonance effects near a combination resonance frequency.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Karev, Artem ; Hagedorn, Peter
Art des Eintrags: Zweitveröffentlichung
Titel: Asynchronous parametric excitation: validation of theoretical results by electronic circuit simulation
Sprache: Englisch
Publikationsjahr: 18 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2020
Ort der Erstveröffentlichung: Dordrecht
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nonlinear Dynamics : An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
Jahrgang/Volume einer Zeitschrift: 102
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00023894
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23894
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

A validation of recent theoretical results on the stability effects of asynchronous parametric excitation is presented. In particular, the coexistence of both resonance and anti-resonance at each combination resonance frequency is to be confirmed on a close-to-experiment simulation model. The simulation model reproduces the experimental setup developed by Schmieg in 1976, remaining the only experimental study on asynchronous excitation to this day. The model consists of two oscillating electronic circuits with feedback-free coupling through parametric excitation. In contrast to a mechanical system, the phase relations of the parametric excitation terms in an electronic system can be easily adjusted. The implementation of the simulation model is performed in the electronic circuit simulation software LTspice. The electronic model itself is first validated against the experimental results obtained by Schmieg and is then used to confirm the theoretical findings. The results of the electronic circuit simulation show excellent qualitative and quantitative agreement with analytical approximations confirming the coexistence of resonance and anti-resonance effects near a combination resonance frequency.

Freie Schlagworte: Parametric excitation, Asynchronous excitation, Stability, Normal forms, Validation
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-238947
Zusätzliche Informationen:

Part of a collection: Computational Methods and Time Series Analysis

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau (FNB)
16 Fachbereich Maschinenbau > Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau (FNB) > Dynamische Schwingungen
Hinterlegungsdatum: 18 Dez 2024 12:30
Letzte Änderung: 19 Dez 2024 10:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen