TU Darmstadt / ULB / TUbiblio

Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites

Hübler, Daniela ; Ghasemi, Alireza ; Riedel, Ralf ; Fleck, Claudia ; Kamrani, Sepideh (2024)
Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites.
In: Journal of Materials Science, 2020, 55 (24)
doi: 10.26083/tuprints-00023935
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The production of fully dense nanocomposites with a homogeneous distribution of nanoparticles through powder metallurgy (PM) techniques is challenging. Additionally to mechanical milling, pressing and sintering, a final consolidation process is needed to fully densify the nanocomposite. Hot isostatic pressing (HIP) is a promising alternative method to other hot forming processes to eliminate porosity in these PM parts. In contrast to hot extrusion, for instance, isotropic properties are achieved, and textures, as they are usually observed in Mg after uniaxial deformation, are avoided. Here, we evaluate the effect of HIP on the densification, microstructure and (nano)hardness of Mg–SiC nanocomposites. Even though density increased indeed, we observed no increase in the mechanical properties, due to significant heterogeneity in the microstructure. SiC-free regions with a higher grain size developed. Local nanohardness measurements of the HIPed Mg nanocomposite revealed that these regions had a significantly lower nanohardness than the SiC-containing regions. Under consideration of mechanisms reported to be active in Mg in the pressure and temperature regime we used, we conclude that grain growth is the most likely mechanism leading to the microstructure observed after HIP. This is driven by the thermodynamic pressure to decrease the grain boundary energy and facilitated by a slightly inhomogeneous distribution of SiC nanoparticles in the sintered nanocomposite.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Hübler, Daniela ; Ghasemi, Alireza ; Riedel, Ralf ; Fleck, Claudia ; Kamrani, Sepideh
Art des Eintrags: Zweitveröffentlichung
Titel: Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites
Sprache: Englisch
Publikationsjahr: 17 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: August 2020
Ort der Erstveröffentlichung: Dordrecht
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Materials Science
Jahrgang/Volume einer Zeitschrift: 55
(Heft-)Nummer: 24
DOI: 10.26083/tuprints-00023935
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23935
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The production of fully dense nanocomposites with a homogeneous distribution of nanoparticles through powder metallurgy (PM) techniques is challenging. Additionally to mechanical milling, pressing and sintering, a final consolidation process is needed to fully densify the nanocomposite. Hot isostatic pressing (HIP) is a promising alternative method to other hot forming processes to eliminate porosity in these PM parts. In contrast to hot extrusion, for instance, isotropic properties are achieved, and textures, as they are usually observed in Mg after uniaxial deformation, are avoided. Here, we evaluate the effect of HIP on the densification, microstructure and (nano)hardness of Mg–SiC nanocomposites. Even though density increased indeed, we observed no increase in the mechanical properties, due to significant heterogeneity in the microstructure. SiC-free regions with a higher grain size developed. Local nanohardness measurements of the HIPed Mg nanocomposite revealed that these regions had a significantly lower nanohardness than the SiC-containing regions. Under consideration of mechanisms reported to be active in Mg in the pressure and temperature regime we used, we conclude that grain growth is the most likely mechanism leading to the microstructure observed after HIP. This is driven by the thermodynamic pressure to decrease the grain boundary energy and facilitated by a slightly inhomogeneous distribution of SiC nanoparticles in the sintered nanocomposite.

Freie Schlagworte: Materials Science, general, Characterization and Evaluation of Materials, Polymer Sciences, Solid Mechanics, Crystallography and Scattering Methods, Classical Mechanics
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-239358
Zusätzliche Informationen:

Special Issue: Journal of Materials Science 1000th Issue

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
600 Technik, Medizin, angewandte Wissenschaften > 670 Industrielle und handwerkliche Fertigung
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 17 Dez 2024 13:00
Letzte Änderung: 19 Dez 2024 09:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen