TU Darmstadt / ULB / TUbiblio

Optimal Collaborative Transportation for Under-Capacitated Vehicle Routing Problems using Aerial Drone Swarms

Sreedhara, Akash Kopparam ; Padala, Deepesh ; Mahesh, Shashank ; Cui, Kai ; Li, Mengguang ; Koeppl, Heinz (2024)
Optimal Collaborative Transportation for Under-Capacitated Vehicle Routing Problems using Aerial Drone Swarms.
2024 IEEE International Conference on Robotics and Automation. Yokohama, Japan (13.05.2024-17.05.2024)
doi: 10.1109/ICRA57147.2024.10611698
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Swarms of aerial drones have recently been considered for last-mile deliveries in urban logistics or automated construction. At the same time, collaborative transportation of payloads by multiple drones is another important area of recent research. However, efficient coordination algorithms for collaborative transportation of many payloads by many drones remain to be considered. In this work, we formulate the collaborative transportation of payloads by a swarm of drones as a novel, under-capacitated generalization of vehicle routing problems (VRP), which may also be of separate interest. In contrast to standard VRP and capacitated VRP, we must additionally consider waiting times for payloads lifted cooperatively by multiple drones, and the corresponding coordination. Algorithmically, we provide a solution encoding that avoids deadlocks and formulate an appropriate alternating minimization scheme to solve the problem. On the hardware side, we integrate our algorithms with collision avoidance and drone controllers. The approach and the impact of the system integration are successfully verified empirically, both on a swarm of real nano-quadcopters and for large swarms in simulation. Overall, we provide a framework for collaborative transportation with aerial drone swarms, that uses only as many drones as necessary for the transportation of any single payload.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Sreedhara, Akash Kopparam ; Padala, Deepesh ; Mahesh, Shashank ; Cui, Kai ; Li, Mengguang ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: Optimal Collaborative Transportation for Under-Capacitated Vehicle Routing Problems using Aerial Drone Swarms
Sprache: Englisch
Publikationsjahr: 8 August 2024
Verlag: IEEE
Buchtitel: 2024 IEEE International Conference on Robotics and Automation (ICRA)
Veranstaltungstitel: 2024 IEEE International Conference on Robotics and Automation
Veranstaltungsort: Yokohama, Japan
Veranstaltungsdatum: 13.05.2024-17.05.2024
DOI: 10.1109/ICRA57147.2024.10611698
Zugehörige Links:
Kurzbeschreibung (Abstract):

Swarms of aerial drones have recently been considered for last-mile deliveries in urban logistics or automated construction. At the same time, collaborative transportation of payloads by multiple drones is another important area of recent research. However, efficient coordination algorithms for collaborative transportation of many payloads by many drones remain to be considered. In this work, we formulate the collaborative transportation of payloads by a swarm of drones as a novel, under-capacitated generalization of vehicle routing problems (VRP), which may also be of separate interest. In contrast to standard VRP and capacitated VRP, we must additionally consider waiting times for payloads lifted cooperatively by multiple drones, and the corresponding coordination. Algorithmically, we provide a solution encoding that avoids deadlocks and formulate an appropriate alternating minimization scheme to solve the problem. On the hardware side, we integrate our algorithms with collision avoidance and drone controllers. The approach and the impact of the system integration are successfully verified empirically, both on a swarm of real nano-quadcopters and for large swarms in simulation. Overall, we provide a framework for collaborative transportation with aerial drone swarms, that uses only as many drones as necessary for the transportation of any single payload.

Zusätzliche Informationen:

Erstveröffentlichung

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 300 Sozialwissenschaften > 380 Handel, Kommunikation, Verkehr
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 17 Dez 2024 12:45
Letzte Änderung: 17 Dez 2024 12:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen