Frenzel, David ; Lang, Jens (2021)
A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws.
In: Computational Optimization and Applications, 80 (1)
doi: 10.1007/s10589-021-00295-2
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
The weighted essentially non-oscillatory (WENO) methods are popular and effective spatial discretization methods for nonlinear hyperbolic partial differential equations. Although these methods are formally first-order accurate when a shock is present, they still have uniform high-order accuracy right up to the shock location. In this paper, we propose a novel third-order numerical method for solving optimal control problems subject to scalar nonlinear hyperbolic conservation laws. It is based on the first-disretize-then-optimize approach and combines a discrete adjoint WENO scheme of third order with the classical strong stability preserving three-stage third-order Runge–Kutta method SSPRK3. We analyze its approximation properties and apply it to optimal control problems of tracking-type with non-smooth target states. Comparisons to common first-order methods such as the Lax–Friedrichs and Engquist–Osher method show its great potential to achieve a higher accuracy along with good resolution around discontinuities.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Frenzel, David ; Lang, Jens |
Art des Eintrags: | Bibliographie |
Titel: | A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws |
Sprache: | Englisch |
Publikationsjahr: | 2 Juli 2021 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Computational Optimization and Applications |
Jahrgang/Volume einer Zeitschrift: | 80 |
(Heft-)Nummer: | 1 |
DOI: | 10.1007/s10589-021-00295-2 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The weighted essentially non-oscillatory (WENO) methods are popular and effective spatial discretization methods for nonlinear hyperbolic partial differential equations. Although these methods are formally first-order accurate when a shock is present, they still have uniform high-order accuracy right up to the shock location. In this paper, we propose a novel third-order numerical method for solving optimal control problems subject to scalar nonlinear hyperbolic conservation laws. It is based on the first-disretize-then-optimize approach and combines a discrete adjoint WENO scheme of third order with the classical strong stability preserving three-stage third-order Runge–Kutta method SSPRK3. We analyze its approximation properties and apply it to optimal control problems of tracking-type with non-smooth target states. Comparisons to common first-order methods such as the Lax–Friedrichs and Engquist–Osher method show its great potential to achieve a higher accuracy along with good resolution around discontinuities. |
Freie Schlagworte: | Nonlinear optimal control, Discrete adjoints, Hyperbolic conservation laws, WENO schemes, Strong stability preserving Runge–Kutta methods |
Zusätzliche Informationen: | Erstveröffentlichung; Mathematics Subject Classifcation 34H05, 49M25, 65L06, 65M22 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 17 Dez 2024 12:01 |
Letzte Änderung: | 17 Dez 2024 12:01 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws. (deposited 10 Dez 2024 12:53)
- A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws. (deposited 17 Dez 2024 12:01) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |