TU Darmstadt / ULB / TUbiblio

Learning Discrete-Time Major-Minor Mean Field Games

Cui, Kai ; Dayanıklı, Gökçe ; Laurière, Mathieu ; Geist, Matthieu ; Pietquin, Olivier ; Koeppl, Heinz (2024)
Learning Discrete-Time Major-Minor Mean Field Games.
38th AAAI Conference on Artificial Intelligence. Vancouver, Canada (20.02.2024 - 27.02.2024)
doi: 10.26083/tuprints-00028687
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Recent techniques based on Mean Field Games (MFGs) allow the scalable analysis of multi-player games with many similar, rational agents. However, standard MFGs remain limited to homogeneous players that weakly influence each other, and cannot model major players that strongly influence other players, severely limiting the class of problems that can be handled. We propose a novel discrete time version of major-minor MFGs (M3FGs), along with a learning algorithm based on fictitious play and partitioning the probability simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random exogeneous environment states but also major players. A key challenge is that the mean field is stochastic and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting from a finite game of interest, and secondly convergence and approximation guarantees of the fictitious play algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the theoretical assumptions made, and show successful equilibrium learning in three example problems. Overall, we establish a learning framework for a novel and broad class of tractable games.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Cui, Kai ; Dayanıklı, Gökçe ; Laurière, Mathieu ; Geist, Matthieu ; Pietquin, Olivier ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Learning Discrete-Time Major-Minor Mean Field Games
Sprache: Englisch
Publikationsjahr: 16 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2024
Ort der Erstveröffentlichung: Menlo Park, Calif.
Verlag: AAAI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the AAAI Conference on Artificial Intelligence
Jahrgang/Volume einer Zeitschrift: 38
(Heft-)Nummer: 9
Buchtitel: Proceedings of the 38th AAAI Conference on Artificial Intelligence
Veranstaltungstitel: 38th AAAI Conference on Artificial Intelligence
Veranstaltungsort: Vancouver, Canada
Veranstaltungsdatum: 20.02.2024 - 27.02.2024
DOI: 10.26083/tuprints-00028687
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28687
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Recent techniques based on Mean Field Games (MFGs) allow the scalable analysis of multi-player games with many similar, rational agents. However, standard MFGs remain limited to homogeneous players that weakly influence each other, and cannot model major players that strongly influence other players, severely limiting the class of problems that can be handled. We propose a novel discrete time version of major-minor MFGs (M3FGs), along with a learning algorithm based on fictitious play and partitioning the probability simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random exogeneous environment states but also major players. A key challenge is that the mean field is stochastic and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting from a finite game of interest, and secondly convergence and approximation guarantees of the fictitious play algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the theoretical assumptions made, and show successful equilibrium learning in three example problems. Overall, we establish a learning framework for a novel and broad class of tractable games.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-286878
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 16 Dez 2024 14:02
Letzte Änderung: 16 Jan 2025 15:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen