TU Darmstadt / ULB / TUbiblio

Deep Unfolding in Multicell MU-MIMO

Schynol, Lukas ; Pesavento, Marius (2022)
Deep Unfolding in Multicell MU-MIMO.
30th European Signal Processing Conference (EUSIPCO 2022). Belgrad, Serbia (29.08.2022-02.09.2022)
doi: 10.23919/EUSIPCO55093.2022.9909892
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The weighted sum-rate maximization in coordinated multicell MIMO networks with intra- and intercell interference and local channel state at the base stations is considered. Based on the concept of unrolling applied to the classical weighted minimum mean squared error (WMMSE) algorithm and ideas from graph signal processing, we present the GCN-WMMSE deep network architecture for transceiver design in multicell MU-MIMO interference channels with local channel state information. Similar to the original WMMSE algorithm it facilitates a distributed implementation in multicell networks. However, GCN-WMMSE significantly accelerates the convergence and con-sequently alleviates the communication overhead in a distributed deployment. Additionally, the architecture is agnostic to different wireless network topologies while exhibiting a low number of trainable parameters and high efficiency w.r.t. training data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Schynol, Lukas ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: Deep Unfolding in Multicell MU-MIMO
Sprache: Englisch
Publikationsjahr: 18 Oktober 2022
Verlag: IEEE
Buchtitel: 30th European Signal Processing Conference (EUSIPCO 2022): Proceedings
Veranstaltungstitel: 30th European Signal Processing Conference (EUSIPCO 2022)
Veranstaltungsort: Belgrad, Serbia
Veranstaltungsdatum: 29.08.2022-02.09.2022
DOI: 10.23919/EUSIPCO55093.2022.9909892
Kurzbeschreibung (Abstract):

The weighted sum-rate maximization in coordinated multicell MIMO networks with intra- and intercell interference and local channel state at the base stations is considered. Based on the concept of unrolling applied to the classical weighted minimum mean squared error (WMMSE) algorithm and ideas from graph signal processing, we present the GCN-WMMSE deep network architecture for transceiver design in multicell MU-MIMO interference channels with local channel state information. Similar to the original WMMSE algorithm it facilitates a distributed implementation in multicell networks. However, GCN-WMMSE significantly accelerates the convergence and con-sequently alleviates the communication overhead in a distributed deployment. Additionally, the architecture is agnostic to different wireless network topologies while exhibiting a low number of trainable parameters and high efficiency w.r.t. training data.

Freie Schlagworte: Wireless networks, Signal processing algorithms, Training data, Signal processing, Network architecture, Transceivers, Topology
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Hinterlegungsdatum: 16 Jan 2025 12:19
Letzte Änderung: 16 Jan 2025 12:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen